The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
An Axiom SNP genotyping array for potato: development, evaluation and applications
Authors: Baig, N., Thelen, K., Ayenan, M. A. T., Hartje, S., Obeng-Hinneh, E., Zgadzaj, R., Renner, J., Muders, K., Truberg, B., Rosen, A., Prigge, V., Bruckmueller, J., Luebeck, J., Van Inghelandt, D., Stich, B.
The study reports the creation and validation of a high‑density Axiom SNP array for Solanum tuberosum, based on 10X Genomics sequencing of 108 diverse clones and integration of existing Illumina markers. The array demonstrated high reproducibility and, after filtering, provided 206,616 informative markers for population structure analysis, GWAS of polyphenol oxidase activity, and genomic prediction with accuracies up to 0.86.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study evaluated natural genetic variation in non-photochemical quenching and photoprotection across 861 sorghum accessions grown in the field over two years, revealing moderate to high broad-sense heritability for chlorophyll fluorescence traits. By integrating genome-wide association studies (GWAS) with transcriptome-wide association studies (TWAS) and covariance analyses, the authors identified 110 high-confidence candidate genes underlying photoprotection, highlighting a complex, polygenic architecture for these traits.