Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study evaluated natural genetic variation in non-photochemical quenching and photoprotection across 861 sorghum accessions grown in the field over two years, revealing moderate to high broad-sense heritability for chlorophyll fluorescence traits. By integrating genome-wide association studies (GWAS) with transcriptome-wide association studies (TWAS) and covariance analyses, the authors identified 110 high-confidence candidate genes underlying photoprotection, highlighting a complex, polygenic architecture for these traits.