Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 25 Papers

Do stomatal movements have a limited dynamic range?

Authors: Muraya, F., Siqueira, J. A., Very, A.-A., Roelfsema, R.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.22.695892

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined the roles of AtKUP2, AtKUP6, AtKUP8, and GORK potassium transport proteins in guard cell function by performing gas-exchange measurements on mature Arabidopsis leaves. Loss of KUP2/6/8 reduced stomatal conductance, whereas a GORK loss‑of‑function mutant showed increased conductance, yet the magnitude of light‑ and ABA‑induced transpiration changes remained similar across genotypes, suggesting a limited dynamic range for rapid stomatal movements that relies on small ionic osmolytes.

stomatal conductance potassium transporters GORK channel AtKUP2/6/8 Arabidopsis

Transcriptome and epigenome dynamics underpin cold stress priming in Arabidopsis

Authors: Sadykova, M., Saze, H.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694799

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.

stress priming DNA methylation cold stress Arabidopsis thaliana transcriptome dynamics

DNA methylation mediates transcriptional stability and transposon-driven trans-regulation under drought in wheat

Authors: Reynolds, I. J., Barratt, L. J., Harper, A. L.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.04.692301

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.

drought stress DNA methylation Triticum aestivum ROS1a demethylase transposable elements

KDM7-mediated oxygen sensing reprograms chromatin to enhance hypoxia tolerance in the root

Authors: Zhang, D., Chirinos, X., Del Chiaro, A., Shukla, V., Ryder, A., Beltran, A. D. P., Iacopino, S., Bota, P., Zivkovic, D., Fioriti, F., Telara, Y., Ellison, C. J., Costa, F., Elliott, P. R., Giorgi, F., Giuntoli, B., Flashman, E. G., Abreu, I., Licausi, F.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.24.690241

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that Arabidopsis root tips adapt to hypoxia by increasing H3K4me3 levels, linked to the inhibition of group 7 demethylases (KDM7s). Genetic loss of KDM7s mimics hypoxic conditions, activating genes that sustain meristem survival, suggesting KDM7s act as root‑specific oxygen sensors that prime epigenetic tolerance mechanisms.

hypoxia root meristem H3K4 trimethylation KDM7 demethylase Arabidopsis

DNA Methylation Dynamics Reveal Unique Plant Responses and Transcriptional Reprogramming to Combined Heat and Phosphate Deficiency Stress

Authors: Lozano-Enguita, A., Victoria Baca-Gonzalez, V., Morillas-Montaez, A., Pascual, J., Valledor, L., del Pozo, J. C., Caro, E.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.19.689328

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.

DNA methylation heat stress phosphate deficiency Arabidopsis thaliana whole-genome bisulfite sequencing

Methionine Triggers Metabolic, Transcriptional, and Epigenetic Reprogramming in Arabidopsis Leaves

Authors: Yerushalmy, Y., Dafni, M., Rabach, N., Hacham, Y., Amir, R.

Date: 2025-11-03 · Version: 1
DOI: 10.1101/2025.11.02.686087

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.

methionine metabolism Arabidopsis thaliana DNA methylation transcriptome reprogramming stress hormone pathways

Integrative epigenomic analysis uncovers asymmetry of enhancer activity in Brassica napus

Authors: Zanini, S. F., Rockenbach, K., Nguyen, A., Arslan, K., Yildiz, G., Snowdon, R., Golicz, A. A.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.31.685802

Category: Plant Biology

Model Organism: Brassica napus

AI Summary

The study mapped the cis‑regulatory landscape of the winter rapeseed cultivar Express617, identifying thousands of novel regulatory elements and characterizing super‑enhancers that are asymmetrically enriched in the Cn subgenome of Brassica napus. An in‑silico pipeline combining population‑level expression data and machine‑learning models revealed that many SE‑associated genes are expressed above predicted levels, and structural variants disrupting SEs lead to reduced gene expression, highlighting their functional importance for gene regulation and breeding.

cis-regulatory elements super-enhancers Brassica napus chromatin accessibility DNA methylation

DNA methylome responses to biotic and abiotic stress in Arabidopsis thaliana: A multi-study analysis

Authors: Behl, R., Gallo-Franco, J. J., Hazarika, R. R., Zhang, Z., Wilming, F., Schnitzler, J.-P., Lindermayr, C., Johannes, F.

Date: 2025-10-20 · Version: 1
DOI: 10.1101/2025.10.20.682861

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrated 16 Arabidopsis thaliana whole‑genome bisulfite sequencing datasets from 13 stress experiments using a unified bioinformatic pipeline to map common and stress‑specific DNA methylation changes. Differentially methylated regions varied by stress type and methylation context, with CG DMRs enriched in gene bodies and CHG/CHH DMRs in transposable elements, some of which overlapped loci prone to stable epimutations. Gene ontology and TE enrichment analyses highlighted shared stress pathways and suggest environmental stress can generate heritable epigenetic variation.

DNA methylation stress response Arabidopsis thaliana transposable elements epimutations

Drought-Induced Epigenetic Memory in the cambium of Poplar Trees persists and primes future stress responses

Authors: DUPLAN, A., FENG, Y. Q., LASKAR, G., CAI, B. D., SEGURA, V., DELAUNAY, A., LE JAN, I., DAVIAUD, C., TOUMI, A., LAURANS, F., SOW, M. D., ROGIER, O., POURSAT, P., DURUFLE, H., JORGE, V., SANCHEZ, L., COCHARD, H., ALLONA, I., TOST, J., FICHOT, R., MAURY, S.

Date: 2025-10-15 · Version: 1
DOI: 10.1101/2025.10.14.681991

Category: Plant Biology

Model Organism: Populus spp.

AI Summary

The study examined short‑term and transannual drought memory in cambium tissues of two Populus genotypes and four epitypes with modified DNA‑methylation machinery, revealing persistent hormone, transcript, and methylation changes one week after stress relief. Trees previously stressed in Year 1 displayed distinct physiological and molecular responses to a second drought in Year 2, indicating long‑term memory linked to stable CG‑context DNA methylation, with genotype‑dependent differences in plasticity and stability. These findings position the cambium as a reservoir for epigenetic stress memory and suggest exploitable epigenetic variation for tree breeding under drought.

drought stress memory DNA methylation Populus cambium epigenetic priming

Major alleles of CDCA7α shape CG-methylation in Arabidopsis thaliana

Authors: Bourguet, P., Lorkovic, Z. J., Casado, D. K., Bapteste, V., Cho, C. H., Igolkina, A., Lee, C.-R., Nordborg, M., Berger, F., Sasaki, E.

Date: 2025-09-07 · Version: 1
DOI: 10.1101/2025.09.03.673934

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using genome‑wide association studies in Arabidopsis thaliana, the authors identified the chromatin‑associated protein CDCA7 as a trans‑regulator that specifically controls CG methylation (mCG) and TE silencing. CDCA7 and its paralog CDCA7β bind the remodeler DDM1, modulating its activity without broadly affecting non‑CG methylation or histone variant deposition, and natural variation in CDCA7 regulatory sequences correlates with local ecological adaptation.

DNA methylation CG methylation (mCG) CDCA7 DDM1 local adaptation
Page 1 of 3 Next