Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 17 Papers

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis

Do stomatal movements have a limited dynamic range?

Authors: Muraya, F., Siqueira, J. A., Very, A.-A., Roelfsema, R.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.22.695892

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined the roles of AtKUP2, AtKUP6, AtKUP8, and GORK potassium transport proteins in guard cell function by performing gas-exchange measurements on mature Arabidopsis leaves. Loss of KUP2/6/8 reduced stomatal conductance, whereas a GORK loss‑of‑function mutant showed increased conductance, yet the magnitude of light‑ and ABA‑induced transpiration changes remained similar across genotypes, suggesting a limited dynamic range for rapid stomatal movements that relies on small ionic osmolytes.

stomatal conductance potassium transporters GORK channel AtKUP2/6/8 Arabidopsis

KDM7-mediated oxygen sensing reprograms chromatin to enhance hypoxia tolerance in the root

Authors: Zhang, D., Chirinos, X., Del Chiaro, A., Shukla, V., Ryder, A., Beltran, A. D. P., Iacopino, S., Bota, P., Zivkovic, D., Fioriti, F., Telara, Y., Ellison, C. J., Costa, F., Elliott, P. R., Giorgi, F., Giuntoli, B., Flashman, E. G., Abreu, I., Licausi, F.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.24.690241

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that Arabidopsis root tips adapt to hypoxia by increasing H3K4me3 levels, linked to the inhibition of group 7 demethylases (KDM7s). Genetic loss of KDM7s mimics hypoxic conditions, activating genes that sustain meristem survival, suggesting KDM7s act as root‑specific oxygen sensors that prime epigenetic tolerance mechanisms.

hypoxia root meristem H3K4 trimethylation KDM7 demethylase Arabidopsis

Clathrin-coated vesicles are targeted for selective autophagy during osmotic stress.

Authors: dragwidge, j., Buridan, M., Kraus, J., Kosuth, T., Chambaud, C., Brocard, L., Yperman, K., Mylle, E., Vandorpe, M., Eeckhout, D., De Jaeger, G., Pleskot, R., Bernard, A., Van Damme, D.

Date: 2025-09-17 · Version: 1
DOI: 10.1101/2025.09.16.676479

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies an autophagy pathway that degrades plasma membrane-derived clathrin-coated vesicles (CCVs) during hyperosmotic stress, helping maintain membrane tension as cell volume decreases. Using live imaging and correlative microscopy, the authors show that the TPLATE complex subunits AtEH1/Pan1 and AtEH2/Pan1 act as selective autophagy receptors by directly binding ATG8, thereby removing excess membrane under drought or salt conditions.

hyperosmotic stress autophagy clathrin-coated vesicles TPLATE complex plasma membrane tension

Deciphering the role of autophagy under Cd toxicity in Arabidopsis thaliana

Authors: Collado-Arenal, A. M., Perez-Gordillo, F. L., Espinosa, J., Moreno-Diaz, R., Shabala, S., Romero-Puertas, M. C., Sandalio, L. M.

Date: 2025-08-31 · Version: 1
DOI: 10.1101/2025.08.27.672299

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates autophagy’s protective role against cadmium stress in Arabidopsis thaliana by comparing wild-type, atg5 and atg7 autophagy-deficient mutants, and ATG5/ATG7 overexpression lines. Cadmium exposure triggered autophagy, shown by ATG8a-PE accumulation, GFP-ATG8a fluorescence and ATG gene up-regulation, with atg5 mutants displaying heightened Cd sensitivity and disrupted metal ion homeostasis, whereas overexpression had limited impact. Genotype-specific differences between Col-0 and Ws backgrounds were also observed.

cadmium stress autophagy Arabidopsis thaliana ATG5 metal ion homeostasis

Unveiling the molecular identity of plant autophagic compartments: A proteo-lipidomic study in Arabidopsis thaliana

Authors: Lupette, J., Chambaud, C., Buridan, M., Castets, J., Wattelet-Boyer, V., Toboso Moreno, I., Kosuth, T., Yatim, C., Dittrich-Domergue, F., Gros, V., Jouhet, J., Claverol, S., Herice, C., Melser, S., Genva, M., Fouillen, L., Bessoule, J.-J., Domergue, F., Bernard, A.

Date: 2025-08-28 · Version: 1
DOI: 10.1101/2025.08.25.671700

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.

autophagy phagophore membrane proteomics lipidomics membrane remodeling

MBD8 is required for LDL2-mediated transcriptional repression downstream of H3K9me2 in Arabidopsis

Authors: Mori, S., Osakabe, A., Juliarni,, Tanaka, Y., Hirayama, M., Inagaki, S., Kakutani, T.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.21.671526

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the methyl‑CpG‑binding domain protein MBD8 interacts with the histone demethylase LDL2 to facilitate removal of H3K4me1 and transcriptional repression downstream of H3K9me2 in Arabidopsis. MBD8 binds GC‑poor DNA independently of cytosine methylation and stabilizes LDL2 protein levels, indicating a broader role for MBD proteins beyond methyl‑DNA recognition.

H3K9me2 LDL2 MBD8 histone demethylation Arabidopsis

A dual component system instructs membrane hydrolysis during the final stages of plant autophagy

Authors: Castets, J., Buridan, M., Toboso Moreno, I., Sanchez de Medina Hernandez, V., Gomez, R. E., Dittrich-Domergue, F., Lupette, J., Chambaud, C., Pascal, S., Ibrahim, T., Bozkurt, T. O., Dagdas, Y., Domergue, F., Joubes, J., Minina, A. E. A., Bernard, A.

Date: 2025-08-02 · Version: 1
DOI: 10.1101/2025.08.01.668046

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the Arabidopsis phospholipases LCAT3 and LCAT4 as essential components that hydrolyze membranes of autophagic bodies within the vacuole, a critical step for autophagy completion. Double mutants lacking both enzymes accumulate autophagic bodies and display diminished autophagic activity, while in vivo reconstitution shows LCAT3 initiates membrane hydrolysis, facilitating LCAT4’s function.

autophagy phospholipase Arabidopsis thaliana vacuolar lumen LCAT3/LCAT4

Cell-type-specific execution of effector-triggered immunity

Authors: Chhillar, H., Jo, L., Redkar, A., Kajala, K., Jones, J. D., Ding, P.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.28.662111

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used chemically induced effector-triggered immunity combined with single-cell transcriptomics to map immune responses across all leaf cell types in Arabidopsis, revealing that while a core defense program is universally activated, individual cell types deploy distinct transcriptional modules. Functional assays showed that epidermis‑specific transcriptional regulators are essential for preventing pathogen penetration, indicating a spatial division of immune functions within the leaf.

effector-triggered immunity single-cell transcriptomics cell-type-specific immune response transcriptional regulators Arabidopsis

Ethylene Receptor Gain- and Loss-of-function Mutants Reveal an ETR1-dependent Transcriptional Network in Roots

Authors: White, M. G., Harkey, A., Muhlemann, J. K., Olex, A. L., Pfeffer, N. J., Houben, M., Binder, B., Muday, G. K.

Date: 2025-06-22 · Version: 3
DOI: 10.1101/2024.06.26.600793

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.

ethylene signaling ETR1 root development gene regulatory network Arabidopsis
Page 1 of 2 Next