Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 39 Papers

Thermotolerant pollen tube growth is controlled by RALF signaling.

Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.

Date: 2025-11-12 · Version: 2
DOI: 10.1101/2025.10.25.684177

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.

thermotolerant pollen tube growth heat stress RALF signaling pollen tube integrity tomato

Additive and partially dominant effects from genomic variation contribute to rice heterosis

Authors: Dan, Z., Chen, Y., Zhou, W., Xu, Y., Huang, J., Chen, Y., Meng, J., Yao, G., Huang, W.

Date: 2025-10-17 · Version: 4
DOI: 10.1101/2024.07.16.603817

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.

heterosis Oryza sativa additive and partially dominant effects metabolomics phenylpropanoid biosynthesis

Discovery of tomato UDP-glucosyltransferases involved in bioactive jasmonate homeostasis using limited proteolysis-coupled mass spectrometry

Authors: Venegas-Molina, J., Mohnike, L., Selma Garcia, S., Janssens, H., Colembie, R., Kimpe, I., Jaramillo-Madrid, A. C., Lacchini, E., Winne, J. M., Van Damme, P., Feussner, I., Goossens, A., Sola, K.

Date: 2025-10-15 · Version: 1
DOI: 10.1101/2025.10.15.682356

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study applied limited proteolysis‑coupled mass spectrometry (LiP‑MS) to map JA‑protein interactions, validating known JA binders and uncovering novel candidates, including several UDP‑glucuronosyltransferases (UGTs). Functional omics, biochemical, enzymatic, and structural analyses demonstrated that two tomato UGTs glucosylate jasmonic acid, revealing a previously missing step in JA catabolism.

jasmonic acid limited proteolysis‑coupled mass spectrometry UDP‑glucuronosyltransferase JA catabolism tomato

Mammalian growth-regulating factors enhance regeneration of recalcitrant transgenic tomato accessions

Authors: Garchery, C., Benejam, J., Grau, A., Gricourt, J., Pelpoir, E., Causse, M.

Date: 2025-09-29 · Version: 1
DOI: 10.1101/2025.09.25.678568

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study assessed the impact of adding mammalian growth factors and cytokines to transformation media on CRISPR‑Cas9–mediated genome editing in six tomato (Solanum lycopersicum) accessions with varying regeneration capacities. Over three years, supplementation with these factors significantly increased regeneration rates and the production of stable secondary transgenic lines, especially in recalcitrant genotypes.

CRISPR-Cas9 plant regeneration mammalian growth factors cytokines tomato

SlATG8f enhances tomato thermotolerance and fruit quality via autophagy and HS pathways

Authors: Cheng, q., Xu, w., wen, c., He, Z., Song, L.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.678159

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The researchers created tomato lines overexpressing the autophagy gene SlATG8f and evaluated their performance under high-temperature stress. qRT‑PCR and physiological measurements revealed that SlATG8f overexpression enhances expression of autophagy‑related and heat‑shock protein genes, accelerates fruit ripening, and improves fruit quality under heat stress.

SlATG8f autophagy high-temperature stress tomato fruit quality

Repressed expression of nucleoporins and importins impairs plant defense against an infectious noncoding RNA

Authors: Wang, Y., Fang, Y., Merritt, B. A., Liu, B., Gu, Y., Mou, Z., Wang, Y., Hao, J.

Date: 2025-09-21 · Version: 1
DOI: 10.1101/2025.09.19.677415

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

Proteomic comparison of mock‑ and potato spindle tuber viroid‑infected tomato revealed a broad down‑regulation of nucleoporins and nuclear transport receptors, leading to impaired nuclear import of the immune regulator NPR1. Overexpression of NPR1 or treatment with a salicylic‑acid analog restored defense and reduced PSTVd infection, highlighting nuclear transport repression as a key vulnerability in plant immunity against viroids.

viroid nucleoporins NPR1 salicylic acid analog tomato

PHO2 suppresses arbuscular mycorrhizal symbiosis in high phosphate conditions

Authors: Birch, S., Perryman, S., Ellison, E., Foreman, N., Mekjan, N., Williams, A., Bate-Weldon, M., Ralfs, T., Pucker, B., Whiting, M., Hope, M. S., Wallington, E., Field, K., Choi, J.

Date: 2025-09-05 · Version: 1
DOI: 10.1101/2025.09.03.673468

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identifies the rice E2 ubiquitin‑conjugating enzyme PHO2 as a key negative regulator of arbuscular mycorrhizal (AM) colonisation under high phosphate conditions. pho2 mutants in Oryza sativa (and Nicotiana benthamiana) maintain AM fungal entry and exhibit enhanced direct and symbiotic phosphate accumulation, linked to sustained expression of AM‑related genes despite phosphate sufficiency.

Arbuscular mycorrhizal symbiosis Phosphate starvation response PHO2 ubiquitin‑conjugating enzyme Oryza sativa Phosphate accumulation

Drought drives reversible disengagement of root-mycorrhizal symbiosis

Authors: Akmakjian, G. Z., Nozue, K., Nakayama, H., Borowsky, A. T., Morris, A. M., Baker, K., Canto-Pastor, A., Paszkowski, U., Sinha, N., Brady, S., Bailey-Serres, J.

Date: 2025-08-27 · Version: 1
DOI: 10.1101/2025.08.25.671999

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study shows that during drought, rice (Oryza sativa) downregulates nutrient acquisition and arbuscular mycorrhizal (AM) symbiosis genes, causing the fungal partner to enter metabolic quiescence and retract hyphae, but upon re-watering the symbiosis is rapidly reactivated. This reversible dynamic suggests that plant‑fungus mutualisms are fragile under fluctuating water availability.

drought stress arbuscular mycorrhizal symbiosis Oryza sativa nutrient acquisition regulation re-watering recovery

MBD8 is required for LDL2-mediated transcriptional repression downstream of H3K9me2 in Arabidopsis

Authors: Mori, S., Osakabe, A., Juliarni,, Tanaka, Y., Hirayama, M., Inagaki, S., Kakutani, T.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.21.671526

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the methyl‑CpG‑binding domain protein MBD8 interacts with the histone demethylase LDL2 to facilitate removal of H3K4me1 and transcriptional repression downstream of H3K9me2 in Arabidopsis. MBD8 binds GC‑poor DNA independently of cytosine methylation and stabilizes LDL2 protein levels, indicating a broader role for MBD proteins beyond methyl‑DNA recognition.

H3K9me2 LDL2 MBD8 histone demethylation Arabidopsis

Ubiquitin-like SUMO protease expansion in rice (Oryza sativa)

Authors: Sue-ob, K., Zhang, C., Sharma, E., Bhosale, R., Sadanandom, A., Jones, A. R.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.20.671006

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study employed computational approaches to characterize the SUMOylation (ULP) machinery in Asian rice (Oryza sativa), analyzing phylogenetic relationships, transcriptional patterns, and protein structures across the reference genome, a population panel, and wild relatives. Findings reveal an expansion of ULP genes in cultivated rice, suggesting selection pressure during breeding and implicating specific ULPs in biotic and abiotic stress responses, providing resources for rice improvement.

SUMOylation ULP proteases Oryza sativa phylogenetic analysis stress response
Previous Page 2 of 4 Next