Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 15 Papers

Do stomatal movements have a limited dynamic range?

Authors: Muraya, F., Siqueira, J. A., Very, A.-A., Roelfsema, R.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.22.695892

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined the roles of AtKUP2, AtKUP6, AtKUP8, and GORK potassium transport proteins in guard cell function by performing gas-exchange measurements on mature Arabidopsis leaves. Loss of KUP2/6/8 reduced stomatal conductance, whereas a GORK loss‑of‑function mutant showed increased conductance, yet the magnitude of light‑ and ABA‑induced transpiration changes remained similar across genotypes, suggesting a limited dynamic range for rapid stomatal movements that relies on small ionic osmolytes.

stomatal conductance potassium transporters GORK channel AtKUP2/6/8 Arabidopsis

CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds

Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.

Date: 2025-11-28 · Version: 1
DOI: 10.1101/2025.11.25.690394

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.

CLPC2 microbial volatile compounds chloroplast CLP protease proteomics Arabidopsis thaliana

KDM7-mediated oxygen sensing reprograms chromatin to enhance hypoxia tolerance in the root

Authors: Zhang, D., Chirinos, X., Del Chiaro, A., Shukla, V., Ryder, A., Beltran, A. D. P., Iacopino, S., Bota, P., Zivkovic, D., Fioriti, F., Telara, Y., Ellison, C. J., Costa, F., Elliott, P. R., Giorgi, F., Giuntoli, B., Flashman, E. G., Abreu, I., Licausi, F.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.24.690241

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that Arabidopsis root tips adapt to hypoxia by increasing H3K4me3 levels, linked to the inhibition of group 7 demethylases (KDM7s). Genetic loss of KDM7s mimics hypoxic conditions, activating genes that sustain meristem survival, suggesting KDM7s act as root‑specific oxygen sensors that prime epigenetic tolerance mechanisms.

hypoxia root meristem H3K4 trimethylation KDM7 demethylase Arabidopsis

Cis-regulatory architecture downstream of FLOWERING LOCUS T underlies quantitative control of flowering

Authors: Zhou, H.-R., Doan, D. T. H., Hartwig, T., Turck, F.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.678055

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used CRISPR/Cas9 to edit the downstream region of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, identifying a 2.3‑kb segment containing the Block E enhancer as crucial for normal FT expression and flowering. Fine‑scale deletions pinpointed a 63‑bp core module with CCAAT‑ and G‑boxes, and revealed a cryptic CCAAT‑box that becomes active when repositioned, highlighting the importance of local chromatin context and motif arrangement for enhancer function.

FLOWERING LOCUS T enhancer architecture cis‑regulatory logic CRISPR/Cas9 chromatin accessibility

Unveiling the molecular identity of plant autophagic compartments: A proteo-lipidomic study in Arabidopsis thaliana

Authors: Lupette, J., Chambaud, C., Buridan, M., Castets, J., Wattelet-Boyer, V., Toboso Moreno, I., Kosuth, T., Yatim, C., Dittrich-Domergue, F., Gros, V., Jouhet, J., Claverol, S., Herice, C., Melser, S., Genva, M., Fouillen, L., Bessoule, J.-J., Domergue, F., Bernard, A.

Date: 2025-08-28 · Version: 1
DOI: 10.1101/2025.08.25.671700

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.

autophagy phagophore membrane proteomics lipidomics membrane remodeling

MBD8 is required for LDL2-mediated transcriptional repression downstream of H3K9me2 in Arabidopsis

Authors: Mori, S., Osakabe, A., Juliarni,, Tanaka, Y., Hirayama, M., Inagaki, S., Kakutani, T.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.21.671526

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the methyl‑CpG‑binding domain protein MBD8 interacts with the histone demethylase LDL2 to facilitate removal of H3K4me1 and transcriptional repression downstream of H3K9me2 in Arabidopsis. MBD8 binds GC‑poor DNA independently of cytosine methylation and stabilizes LDL2 protein levels, indicating a broader role for MBD proteins beyond methyl‑DNA recognition.

H3K9me2 LDL2 MBD8 histone demethylation Arabidopsis

Cell-type-specific execution of effector-triggered immunity

Authors: Chhillar, H., Jo, L., Redkar, A., Kajala, K., Jones, J. D., Ding, P.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.28.662111

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used chemically induced effector-triggered immunity combined with single-cell transcriptomics to map immune responses across all leaf cell types in Arabidopsis, revealing that while a core defense program is universally activated, individual cell types deploy distinct transcriptional modules. Functional assays showed that epidermis‑specific transcriptional regulators are essential for preventing pathogen penetration, indicating a spatial division of immune functions within the leaf.

effector-triggered immunity single-cell transcriptomics cell-type-specific immune response transcriptional regulators Arabidopsis

Ethylene Receptor Gain- and Loss-of-function Mutants Reveal an ETR1-dependent Transcriptional Network in Roots

Authors: White, M. G., Harkey, A., Muhlemann, J. K., Olex, A. L., Pfeffer, N. J., Houben, M., Binder, B., Muday, G. K.

Date: 2025-06-22 · Version: 3
DOI: 10.1101/2024.06.26.600793

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.

ethylene signaling ETR1 root development gene regulatory network Arabidopsis

A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants

Authors: Ueno, R., Ito, S., Oyama, T.

Date: 2025-05-30 · Version: 1
DOI: 10.1101/2025.05.27.656507

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a CRISPR/Cas9‑based restoration system (CiRBS) that reactivates a disabled luciferase reporter (LUC40Ins26bp) in transgenic Arabidopsis, enabling long‑term single‑cell bioluminescence monitoring. Restoration occurs within 24 h after particle‑bombardment‑mediated CRISPR delivery, with ~7 % of cells regaining luminescence and most restored cells carrying a single correctly edited chromosome, facilitating reliable analysis of cellular gene‑expression heterogeneity.

CRISPR/Cas9 bioluminescence reporter particle bombardment single‑cell gene expression Arabidopsis thaliana

SNRK3.15 is a crucial component of the sulfur deprivation response in Arabidopsis thaliana

Authors: Apodiakou, A., Heyneke, E., Alseekh, S., Pinsorn, P., Metzger, S., Kopriva, S., Schulze, W., Hoefgen, R., Whitcomb, S. J.

Date: 2025-05-03 · Version: 1
DOI: 10.1101/2025.04.29.651231

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the serine/threonine protein kinase CIPK14/SNRK3.15 as a regulator of sulfate‑deficiency responses in Arabidopsis thaliana seedlings, with mutants showing diminished early adaptive and later salvage responses under sulfur starvation. While snrk3.15 mutants exhibit no obvious phenotype under sufficient sulfur, the work provides a novel proteomic dataset comparing wild‑type and mutant seedlings under sulfur limitation.

sulfate deprivation CIPK14/SNRK3.15 Arabidopsis thaliana kinase signaling proteomics
Page 1 of 2 Next