Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

A Key Role for S-Nitrosylation in Immune Regulation and Development in the Liverwort Marchantia polymorpha

Authors: Goodrich, J.

Date: 2025-09-30 · Version: 1
DOI: 10.1101/2025.09.29.679193

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study characterizes the single-copy S-nitrosoglutathione reductase 1 (MpGSNOR1) in the liverwort Marchantia polymorpha, showing that loss-of-function mutants generated via CRISPR/Cas9 exhibit marked morphological defects and compromised SNO homeostasis and immune responses. These findings indicate that GSNOR-mediated regulation of S‑nitrosylation is an ancient mechanism linking development and immunity in early land plants.

Nitric oxide S-nitrosylation GSNOR Marchantia polymorpha plant immunity

A tRNA-gRNA multiplexing system for CRISPR genome editing in Marchantia polymorpha.

Authors: Frangedakis, E., Yelina, N., Eeda, S. K., Romani, F., Fragkidis, A., Haseloff, J., Hibberd, J.

Date: 2025-04-20 · Version: 1
DOI: 10.1101/2025.04.18.649274

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The authors adapted OpenPlant kit CRISPR/Cas9 tools to enable multiplex gRNA expression from a single transcript using tRNA sequences in the liverwort Marchantia polymorpha, markedly enhancing editing efficiency and scalability. They coupled this vector system with a simplified, optimized thallus transformation protocol, providing a rapid and versatile platform for generating CRISPR/Cas9 mutants and advancing functional genomics in this model species.

CRISPR/Cas9 multiplex gRNA expression tRNA-mediated processing Marchantia polymorpha thallus transformation