Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Integrative Multi-Omics Analysis Reveals Stress-Specific Molecular Architectures in Soybean under Drought and Rust Infection

Authors: Husein, G., Castro-Moretti, F. R., Prado, M., Amorim, L., Mazzafera, P., Canales, J., Monteiro-Vitorello, C. B.

Date: 2025-07-08 · Version: 1
DOI: 10.1101/2025.07.07.663534

Category: Plant Biology

Model Organism: Glycine max

AI Summary

The study examined soybean (Glycine max) responses to simultaneous drought and Asian soybean rust infection using combined transcriptomic and metabolomic analyses. Weighted Gene Co-expression Network Analysis identified stress-specific gene modules linked to metabolites, while Copula Graphical Models uncovered sparse, condition‑specific networks, revealing distinct molecular signatures for each stress without overlapping genes or metabolites. The integrative approach underscores a hierarchical, modular defense architecture and suggests targets for breeding multi‑stress resilient soybeans.

Asian soybean rust drought stress transcriptomics metabolomics co-expression network

Iron retention coupled with trade-offs in localized symbiotic effects confers tolerance to combined iron deficiency and drought in soybean

Authors: Hasan, M. R., Thapa, A., Kabir, A. H.

Date: 2025-03-24 · Version: 2
DOI: 10.1101/2025.01.02.631154

Category: Plant Biology

Model Organism: Glycine max

AI Summary

The study compares iron deficiency and drought tolerance between two soybean genotypes, Clark (tolerant) and Arisoy (sensitive), using multi‑omics analyses. Clark maintains iron homeostasis, higher antioxidant protein expression, and recruits beneficial root microbes (Variovorax, Paecilomyces) that support nutrient uptake and nodule function, while Arisoy shows impaired physiological and microbial responses. The findings identify host‑microbe interactions and specific molecular pathways as potential targets for breeding and microbiome‑based biofertilizers.

soybean (Glycine max) iron deficiency drought stress root microbiome multi‑omics