Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 276 Papers

Multi-Level Characterization Reveals Divergent Heat Response Strategies Across Wheat Genotypes of Different Ploidy

Authors: Arenas-M, A., Mino, I., Uauy, C., Calderini, D. F., Canales, J.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701169

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Field experiments combined with RNA sequencing revealed that wheat ploidy influences heat stress resilience, with tetraploid T. turgidum showing the smallest yield loss and hexaploid T. aestivum mounting the largest transcriptional response. Ploidy-dependent differences were observed in differential gene expression, alternative splicing—including hexaploid-specific exon skipping of NF‑YB—and co‑expression networks linked to grain traits, highlighting candidate pathways for breeding heat‑tolerant wheat.

heat stress wheat ploidy RNA sequencing differential gene expression alternative splicing

PDLP5 regulates aquaporin-mediated hydrogen peroxide transport in Arabidopsis

Authors: Li, Z., Liu, S.-L., Islam, S., Clements, M., Chen, Y., Aung, K.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.21.700913

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that plasmodesmata‑located protein 5 (PDLP5) interacts with plasma membrane intrinsic proteins (PIPs) to inhibit H2O2 transport across the plasma membrane in Arabidopsis. Overexpression of PDLP5 reduces H2O2 uptake and diminishes H2O2‑induced root growth inhibition, whereas pdlp5 mutants show enhanced sensitivity, with PIP2;5 identified as a key target of this regulation.

Aquaporins Plasma membrane intrinsic proteins (PIPs) PDLP5 Hydrogen peroxide transport Arabidopsis thaliana

Microtubules in Arabidopsis pollen tubes are oriented away from the tube apex and are actin-independent at the cortex

Authors: Coomey, J. H., Gallup, E. R., Dixit, R.

Date: 2026-01-22 · Version: 1
DOI: 10.64898/2026.01.21.700958

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used live-cell fluorescence imaging of Arabidopsis thaliana pollen tubes co-expressing labeled tubulin and actin to reveal partial co-localization of the two cytoskeletal networks. Pharmacological disruption showed that microtubules depend on actin for stability in the medial region, while actin remains unaffected by microtubule loss, indicating spatially dependent cytoskeletal crosstalk. Tracking of the microtubule plus‑end binding protein EB1b demonstrated that the microtubule array is primarily parallel with plus ends oriented away from the apex.

pollen tube actin–microtubule interaction Arabidopsis thaliana live-cell fluorescence imaging EB1b plus‑end tracking

The parasitic plant Phtheirospermum japonicum suppresses host immunity

Authors: Bhukya, D. P. N., Spallek, T.

Date: 2026-01-22 · Version: 1
DOI: 10.64898/2026.01.20.700512

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that invasion of Arabidopsis thaliana roots by the parasitic plant Phtheirospermum japonicum induces a phosphate‑starvation response in the host, which in turn leads to systemic suppression of immunity. This immunosuppression makes Arabidopsis more vulnerable to secondary microbial infections, highlighting the importance of multitrophic interactions in crop resilience.

parasitic plant invasion phosphate starvation response systemic immune suppression multitrophic interactions Arabidopsis thaliana

The circadian clock gates lateral root development

Authors: Nomoto, S., Mamerto, A., Ueno, S., Maeda, A. E., Kimura, S., Mase, K., Kato, A., Suzuki, T., Inagaki, S., Sakaoka, S., Nakamichi, N., Michael, T. P., Tsukagoshi, H.

Date: 2026-01-15 · Version: 1
DOI: 10.64898/2026.01.14.699582

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the circadian clock component ELF3 as a temporal gatekeeper that limits hormone‑induced pericycle proliferation and lateral root development in Arabidopsis thaliana. Time‑resolved transcriptomics, imaging, and genetic analyses show that ELF3 maintains rhythmic expression of key regulators via LNK1 and MADS‑box genes, and that loss of ELF3 disrupts this rhythm, enhancing callus growth and accelerating root organogenesis.

circadian clock ELF3 lateral root development hormonal signaling Arabidopsis thaliana

Cytokinin Senescence Delay Is Shaped by Receptor Specificity and Metabolic Stability

Authors: Hasannin, O., Khanna, R. R., Singh, S., Petrik, I., Strnad, M., Novak, O., Cerny, M., Rashotte, A. M.

Date: 2026-01-13 · Version: 1
DOI: 10.64898/2026.01.12.699116

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that cytokinin (CK) signaling strength is governed by the interplay of receptor preference and metabolic stability of individual CK isoforms, affecting tissue-specific responses in Arabidopsis. Using physiological, genetic, and multi-omics approaches, the authors show that dihydrozeatin compensates for lower receptor affinity with higher persistence during senescence, while N‑glucoside CKs modulate signaling intensity in a ratio‑dependent manner.

cytokinin isoforms receptor affinity metabolic persistence Arabidopsis thaliana N‑glucoside modulation

Ultra large-scale 2D clinostats uncover environmentally derived variation in tomato responses to simulated microgravity

Authors: Hostetler, A. N., Kennebeck, E., Reneau, J. W., Birtell, E., Caldwell, D. L., Iyer-Pascuzzi, A. S., Sparks, E. E.

Date: 2026-01-13 · Version: 2
DOI: 10.1101/2025.05.16.654566

Category: Plant Biology

Model Organism: Solanum lycopersicum (tomato)

AI Summary

The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.

simulated microgravity ultra large-scale clinostat tomato (Solanum lycopersicum) heat stress plant growth interaction

The STA1-DOT2 interaction promotes nuclear speckle formation and splicing robustness in growth and heat stress responses

Authors: Kim, H., Yu, K.-j., Park, S. Y., Seo, D. H., Jeong, D.-H., Kim, W. T., Yun, D.-J., Lee, B.-h.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.11.698856

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the interaction between spliceosomal proteins STA1 and DOT2 controls nuclear speckle organization, pre‑mRNA splicing efficiency, and heat‑stress tolerance in Arabidopsis thaliana. A missense mutation in DOT2 restores the weakened STA1‑DOT2 interaction in the sta1‑1 mutant, linking interaction strength to speckle formation and transcriptome‑wide intron retention under heat stress, while pharmacological inhibition of STA1‑associated speckles reproduces the mutant phenotypes. These findings reveal a heat‑sensitive interaction node that couples spliceosome assembly to nuclear speckle dynamics and splicing robustness.

spliceosome nuclear speckles STA1‑DOT2 interaction heat stress Arabidopsis thaliana

Phosphovariants of the canonical heterotrimeric Gα protein, GPA1, differentially affect G protein activity and Arabidopsis development

Authors: Chakravorty, D., Assmann, S. M.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.10.698825

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study generated ten phosphomimetic variants of the Arabidopsis G protein subunit GPA1 to examine how phosphorylation influences its biochemical activity and developmental functions. In vitro binding assays showed that mutations at S49 and S52 disrupt GTP/GDP binding, while in vivo analyses revealed that distinct phosphomutants differentially rescue gpa1 null phenotypes, supporting a multi‑state signaling model for plant G proteins.

heterotrimeric G protein GPA1 phosphorylation Arabidopsis thaliana phosphomimetic mutants signal transduction

Complex regulation of RETINOBLASTOMA-RELATED's interactions with E2Fs via phosphorylation

Authors: Magyar, Z., Pettko-Szandtner, A., Vadai-Nagy, F., Gombos, M., Hlacs, A., Molnar, E., Marton, A., Vizler, C., Shiekh Bin Hamid, R., Kalo, P., Feher, A.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.10.698770

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study maps CDK-mediated phosphorylation of Arabidopsis RBR, revealing that while many phosphorylated forms still bind E2Fs, multi‑phosphorylated RBR with a phosphorylated S911 site loses association with E2Fs and DREAM components and instead binds RNA‑binding proteins linked to ribosome biogenesis and translation. S911 phosphorylation is enriched in proliferating cells and rapidly declines after DNA damage, suggesting it switches RBR from a proliferation to a quiescence role, and molecular modeling indicates this site becomes inaccessible when RBR is complexed with E2Fs.

RBR phosphorylation E2F‑DREAM complex S911 site post‑transcriptional regulation Arabidopsis thaliana
Page 1 of 28 Next