Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 3 Papers

Features affecting Cas9-Induced Editing Efficiency and Patterns in Tomato: Evidence from a Large CRISPR Dataset

Authors: Cucuy, A., Ben-Tov, D., Melamed-Bessudo, C., Honig, A., Cohen, B. A., Levy, A. A.

Date: 2026-01-07 · Version: 1
DOI: 10.64898/2026.01.06.696182

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.

CRISPR/Cas9 ATAC-seq chromatin accessibility microhomology‑mediated end joining tomato

Rapid population flux in bacterial spot xanthomonads during a transition in dominance between two genotypes in consecutive tomato production seasons and identification of a new species Xanthomonas oklahomensis sp. nov.

Authors: Johnson, B., Subedi, A., Damicone, J., Goss, E., Jones, J. B., Jibrin, M. O.

Date: 2025-04-16 · Version: 1
DOI: 10.1101/2025.04.13.648550

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study examined Xanthomonas strains causing bacterial spot on tomato in Oklahoma fields during 2018‑2019, revealing a shift from X. euvesicatoria pv. euvesicatoria (Xee) to X. euvesicatoria pv. perforans (Xep) race T4, which also expanded to pepper. Phenotypic assays and whole‑genome sequencing highlighted differences in race composition, host range, copper sensitivity, and effector repertoires, and identified a novel species, Xanthomonas oklahomensis.

bacterial spot Xanthomonas euvesicatoria population shift phylogenetic analysis copper resistance

Phenotypic similarity of NAD(P)-Malic Enzymes in Tomato: Unveiling Patterns of Convergent and Parallel Evolution

Authors: Martinatto, A., Bohm, J. M., Bustamante, C., Pancaldi, F., Schranz, M. E., Tronconi, M.

Date: 2025-02-16 · Version: 1
DOI: 10.1101/2025.02.12.637823

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study characterizes all seven malic enzyme genes in tomato, analyzing their tissue-specific expression, temperature and ethylene responsiveness, and linking specific isoforms to metabolic processes such as starch and lipid biosynthesis during fruit development. Phylogenetic, synteny, recombinant protein biochemical assays, and promoter analyses were used to compare tomato enzymes with Arabidopsis counterparts, revealing complex evolutionary dynamics that decouple phylogeny from functional orthology.

malic enzyme NADP-ME Solanum lycopersicum gene expression phylogenetic analysis