The authors introduce the ENABLE(R) Gene Editing in planta toolkit, a streamlined two‑step cloning system for creating CRISPR/Cas9 knockout vectors suitable for transient or stable transformation. Validation was performed in Oryza sativa protoplasts and Arabidopsis thaliana plants, and the toolkit includes low‑cost protocols aimed at facilitating adoption in the Global South.
The study investigates the roles of the receptor-like kinase CRK2 and the RNA-binding protein GRP7 in regulating gibberellin signaling and floral transition in Arabidopsis, using phenotypic analyses of single and double mutants. Exogenous gibberellic acid treatments and transcript profiling reveal that CRK2 and GRP7 jointly modulate GA-responsive pathways, highlighting a novel regulatory layer involving membrane kinases and RNA-binding proteins.
The study investigates how a small molecule that lengthens circadian period can quantitatively adjust the critical day length required for flowering in monocot plants. By modulating the clock's timing, the researchers provide evidence supporting the external coincidence model of photoperiodic control.
The study sequenced genomes of ericoid mycorrhiza‑forming liverworts and experimentally reconstituted the symbiosis, revealing a nutrient‑regulated state that supports intracellular colonization. Comparative transcriptomics identified an ancestral gene module governing intracellular symbiosis, and functional validation in Marchantia paleacea through genetic manipulation, phylogenetics, and transactivation assays confirmed its essential role. The findings suggest plants have retained and independently recruited this ancestral module for diverse intracellular symbioses.
The authors created a fast‑cycling, isogenic barley line (GP‑rapid) by introgressing the wild‑type Ppd‑H1 allele from Igri into the Golden Promise cultivar and performing two backcrosses to limit the donor genome, achieving a 25% reduction in generation time under speed‑breeding conditions while retaining high transformation efficiency. CRISPR/Cas9‑mediated editing of Ppd‑H1 showed regeneration and transformation rates comparable to the original Golden Promise, establishing GP‑rapid as a rapid platform for transgenic and gene‑edited barley research.
The study applied CRISPR/Cas9 gene editing to Physalis peruviana to modify plant‑architecture genes and create a compact growth ideotype. This compact phenotype is intended to increase per‑plot yield and support future breeding efforts for this nutritionally valuable minor crop.
The study used CRISPR/Cas9 to edit the downstream region of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, identifying a 2.3‑kb segment containing the Block E enhancer as crucial for normal FT expression and flowering. Fine‑scale deletions pinpointed a 63‑bp core module with CCAAT‑ and G‑boxes, and revealed a cryptic CCAAT‑box that becomes active when repositioned, highlighting the importance of local chromatin context and motif arrangement for enhancer function.
The study optimized three wheat transformation methods—immature embryo, callus, and in planta injection—by systematically adjusting Agrobacterium strain, bacterial density, acetosyringone concentration, and incubation conditions, achieving transformation efficiencies up to 66.84%. Using these protocols, CRISPR/Cas9 knockout of the negative regulator TaARE1-D produced mutants with increased grain number, spike length, grain size, and a stay‑green phenotype, demonstrating the platform’s potential to accelerate yield and stress‑tolerance improvements in wheat.
The study examined how allelic variation at three barley flowering-time genes (PPD‑H1, ELF3, and PHYC) influences photoperiod response parameters, revealing that ELF3 reduces intrinsic earliness and PhyC‑e lowers photoperiod sensitivity. By testing Near Isogenic Lines and HEB‑25 lines under 16–24 h photoperiods, the authors identified a 20‑h threshold for PPD‑H1 lines and proposed reduced photoperiod regimes (20 h and 16 h) for energy‑efficient speed breeding.
The study integrated weekly morphophysiological measurements with high-density genotyping-by-sequencing data and a machine‑learning pipeline to dissect flowering time variation in diverse Cannabis sativa landraces. By applying mutual information, recursive feature elimination, random forest, and support vector machine classifiers to over 234,000 combined genetic, phenotypic, and environmental features, the authors identified 53 key markers that classify early, medium, and late flowering types with 96.6% accuracy. Notable loci, including CsFT3 and CsCFL1, were highlighted as promising targets for breeding and smart‑crop strategies.