Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Developing a Molecular Toolkit to ENABLE all to apply CRISPR/Cas9-based Gene Editing in planta

Authors: Abate, B. A., Hahn, F., Chirivi, D., Betti, C., Fornara, F., Molloy, J. C., Krainer, K. M. C.

Date: 2025-11-09 · Version: 1
DOI: 10.1101/2025.11.09.687425

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors introduce the ENABLE(R) Gene Editing in planta toolkit, a streamlined two‑step cloning system for creating CRISPR/Cas9 knockout vectors suitable for transient or stable transformation. Validation was performed in Oryza sativa protoplasts and Arabidopsis thaliana plants, and the toolkit includes low‑cost protocols aimed at facilitating adoption in the Global South.

CRISPR/Cas9 plant gene editing low‑cost cloning Global South agriculture ENABLE(R) toolkit

A drought stress-responsive metabolite malate modulates stomatal responses through G-protein-dependent pathway in grapevine and Arabidopsis

Authors: Mimata, Y., Gong, R., Pei, X., Qin, G., Ye, W.

Date: 2025-02-27 · Version: 2
DOI: 10.1101/2024.04.02.587830

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study examined how tricarboxylic acid (TCA) cycle metabolites influence drought tolerance in grapevine and Arabidopsis, finding that malate uniquely triggers stomatal closure via elevations in cytosolic Ca2+ and activation of the SLAC1 anion channel. G-proteins were shown to be essential for malate‑mediated signaling, linking metabolic changes to drought response through a second‑messenger cascade.

drought stress TCA cycle metabolites malate signaling guard cells G‑protein