Vacuolar invertase knockout enhances drought tolerance in potato plants
Authors: Roitman, M., Teper-Bamnolker, P., Doron-Faigenboim, A., Sikron, N., Fait, A., Vrobel, O., Tarkowski, P., Moshelion, M., Bocobza, S., Eshel, D.
CRISPR/Cas9 knockout of the vacuolar invertase gene (StVInv) in potato enhanced drought resilience, with mutants maintaining higher stomatal conductance, transpiration, and photosynthetic efficiency, leading to improved agronomic water-use efficiency and biomass under water limitation. Metabolomic profiling showed accumulation of galactinol and raffinose, while ABA levels were reduced, indicating altered osmoprotective and hormonal responses that support sustained growth during drought.
drought stress vacuo lar invertase knockout CRISPR/Cas9 raffinose family oligosaccharides water-use efficiency
The functional divergence of two ethylene receptor subfamilies that exhibit Ca2+-permeable channel activity
Authors: Pan, C., Cheng, J., Lin, Z., Hao, D., Xiao, Z., Ming, Y., Song, W., Liu, L., Guo, H.
The study demonstrates that subfamily I ethylene receptors form the core ethylene‑sensing module and act epistatically over subfamily II receptors, uniquely possessing Ca2+‑permeable channel activity that drives ethylene‑induced cytosolic calcium influx. This reveals a mechanistic link whereby subfamily I receptors integrate hormone perception with calcium signaling in plants.
The study engineered Tobacco rattle virus vectors incorporating distinct RNA secondary structures as mobility factors to improve guide RNA delivery to plant meristems. Using Nicotiana benthamiana plants expressing Cas9, optimal virus constructs were identified that generated both somatic and heritable edits, and these constructs were successfully applied to edit the emerging oilseed crop pennycress (Thlaspi arvense).
The study integrated metabolomic and transcriptomic analyses of red clover (Trifolium pratense) roots infected with Fusarium oxysporum and Phoma medicaginis to identify candidate cytochrome P450 enzymes responsible for the methylenedioxy bridge formation in (-)-maackiain biosynthesis. Using co‑expression network analysis and phylogenetic screening, five P450 candidates were selected and screened in engineered Saccharomyces cerevisiae, revealing TpPbS/CYP76F319 as the enzyme catalyzing conversion of calycosin to pseudobaptigenin. This discovery enables reconstruction of the complete (-)-maackiain pathway for potential health and agricultural applications.
pterocarpans cytochrome P450 (-)-maackiain red clover metabolomics
Consistent drought regulation in grapevine is driven by directional transcription factor activity
Authors: Vasquez-Marambio, G., Moyano, T., Navarro, D., Sequeida, A., Gainza-Cortes, F., Matus, J. T., Orellana, A., Alvarez, J. M.
The study performed a meta‑transcriptomic analysis of over twenty drought versus control experiments in Vitis vinifera and two hybrid rootstocks, identifying a core set of 4,617 drought‑responsive genes. Using transcription factor binding motif enrichment and random‑forest machine learning, gene regulatory networks were built, revealing key regulators such as ABF2, MYB30A, and a novel HMG‑box protein. These regulators and network hierarchies provide candidate targets for breeding and biotechnological improvement of grapevine drought tolerance.
The authors introduce the ENABLE(R) Gene Editing in planta toolkit, a streamlined two‑step cloning system for creating CRISPR/Cas9 knockout vectors suitable for transient or stable transformation. Validation was performed in Oryza sativa protoplasts and Arabidopsis thaliana plants, and the toolkit includes low‑cost protocols aimed at facilitating adoption in the Global South.
CRISPR/Cas9 plant gene editing low‑cost cloning Global South agriculture ENABLE(R) toolkit
Barley (Hordeum vulgare) maintains tricarboxylic acid cycle activity without invoking the GABA shunt under salt stress
The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.
The authors created a fast‑cycling, isogenic barley line (GP‑rapid) by introgressing the wild‑type Ppd‑H1 allele from Igri into the Golden Promise cultivar and performing two backcrosses to limit the donor genome, achieving a 25% reduction in generation time under speed‑breeding conditions while retaining high transformation efficiency. CRISPR/Cas9‑mediated editing of Ppd‑H1 showed regeneration and transformation rates comparable to the original Golden Promise, establishing GP‑rapid as a rapid platform for transgenic and gene‑edited barley research.
Golden Promise Ppd-H1 speed breeding CRISPR/Cas9 transformation efficiency
The O-glycosyltransferase SECRET AGENT Participates in Abscisic Acid-Induced Microtubule Remodeling and Stomatal Closure in Arabidopsis thaliana
Authors: Sun, P., Wu, Y., Wang, P., Hu, M., Wang, Z., Yu, R., Li, J.
The study reveals that the Arabidopsis O-GlcNAc transferase SEC is essential for timely ABA‑induced stomatal closure and drought tolerance, with sec-5 mutants showing delayed closure and increased water loss, while SEC overexpression enhances responsiveness. SEC influences guard‑cell microtubule remodeling, as loss of SEC impairs microtubule reorganization and SEC directly interacts with tubulin α‑4, suggesting tubulin as a target of O‑GlcNAcylation.
The study shows that inoculation with the non‑diazotrophic bacterium Enterobacter sp. SA187 significantly improves Arabidopsis thaliana growth under low nitrate conditions by increasing fresh weight, primary root length, and lateral root density, while enhancing nitrate accumulation and reducing shoot C:N ratios. Transcriptomic and mutant analyses reveal that these benefits depend on ethylene signaling and the activity of high‑affinity nitrate transporters NRT2.5 and NRT2.6, indicating an ethylene‑mediated, HATS‑dependent reprogramming of nitrogen uptake.