Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 14 Papers

G3BP1 Phosphorylation Regulates Plant Immunity in Arabidopsis

Authors: Hirt, H., Abdulhakim, F., Abdulfaraj, A., Rayapuram, N.

Date: 2025-05-08 · Version: 1
DOI: 10.1101/2025.05.06.652493

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the RNA‑binding protein AtG3BP1 as a phosphorylation target of MAPKs MPK3, MPK4, and MPK6 at Ser257 in Arabidopsis thaliana and shows that this modification promotes susceptibility to bacterial pathogens, suppresses ROS accumulation and salicylic acid biosynthesis, and maintains stomatal opening. Phospho‑mimic and phospho‑dead mutants reveal that phosphorylation stabilizes AtG3BP1 by preventing proteasomal degradation, highlighting a novel post‑translational control layer in plant immunity.

MAPK signaling AtG3BP1 phosphorylation plant immunity stomatal defense

Actin Depolymerization Factors (ADFs) Moonlighting: Nuclear Immune Regulation by Interacting with WRKY Transcription Factors and Shaping the Transcriptome

Authors: Li, P., Kelley, B., Li, Z., Procter, B., Corrion, A., Xie, X., Sheick, R., Lu, Y.-j., Nomoto, M., Wei, C.-i., Tada, Y., He, S.-Y., Xiao, S., Day, B.

Date: 2025-04-30 · Version: 1
DOI: 10.1101/2025.04.29.651294

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that Arabidopsis actin depolymerization factors (ADF2/3/4) have a nuclear moonlighting role, directly interacting with WRKY transcription factors to regulate immune‑related gene expression. Nuclear, rather than cytosolic, ADFs are essential for defense against both virulent and avirulent Pseudomonas syringae, highlighting a non‑canonical mechanism linking actin dynamics to transcriptional control in plant immunity.

actin depolymerization factors nuclear transcription regulation WRKY transcription factors plant immunity Arabidopsis thaliana

SnRK1.1 Coordinates Organ-Specific Growth-Defense Programs via Transcriptomic Rewiring in Arabidopsis thaliana

Authors: Kalachova, T., Muller, K., Lacek, J., Pree, S., Antonova, A., Bondarenko, O., Burketova, L., Retzer, K., Weckwerth, W.

Date: 2025-04-29 · Version: 1
DOI: 10.1101/2025.04.25.650715

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.

SnRK1 KIN10 transcriptome reprogramming plant immunity tissue-specific signaling

Production of homozygous deletion mutants targeting fertilization regulator genes through multiplex genome editing

Authors: Yoshimura, A., Seo, Y., Kobayashi, S., Igawa, T.

Date: 2025-03-06 · Version: 1
DOI: 10.1101/2025.02.28.640930

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a CRISPR/Cas9 multiplex guide RNA strategy to delete entire open reading frames of four reproductive genes in Arabidopsis thaliana, achieving homozygous deletions already in the T1 generation with rates of 8.3–30%. Deletion efficiencies correlated with DeepSpCas9 prediction scores, and phenotypic analyses revealed unexpected effects of residual gene fragments on fertilization and seed development.

CRISPR/Cas9 multiplex guide RNAs gene knockout Arabidopsis thaliana fertilization regulators
Previous Page 2 of 2