The study presents an optimized Agrobacterium-mediated transformation toolkit for Sorghum bicolor that achieves up to 95.7% editing efficiency using CRISPR/Cas9 targeting the SbPDS gene, and demonstrates comparable performance with a PAM‑broadened SpRY variant. This platform enables multiplex genome editing and is positioned for integration of advanced tools such as prime and base editors to accelerate sorghum breeding.
The study evaluated natural genetic variation in non-photochemical quenching and photoprotection across 861 sorghum accessions grown in the field over two years, revealing moderate to high broad-sense heritability for chlorophyll fluorescence traits. By integrating genome-wide association studies (GWAS) with transcriptome-wide association studies (TWAS) and covariance analyses, the authors identified 110 high-confidence candidate genes underlying photoprotection, highlighting a complex, polygenic architecture for these traits.