Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 27 Papers

Large-Scale Multigenome-Wide Study Predicts the Existence of Transmembrane Phosphotransfer Proteins in Plant MSP Signaling Pathway

Authors: Lomin, S. N., Brenner, W. G., Savelieva, E. M., Arkhipov, D. V., Romanov, G. A.

Date: 2025-07-31 · Version: 1
DOI: 10.1101/2025.07.28.667123

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.

transmembrane HPt proteins multistep phosphorelay phylogenetic analysis molecular modeling plant signaling

A copper-dependent, redox-based hydrogen peroxide perception in plants

Authors: Ishihama, N., Fukuda, Y., Shirano, Y., Takizawa, K., Hiroyama, R., Fujimoto, K. J., Ito, H., Nishimura, M., Yanai, T., Inoue, T., Shirasu, K., Laohavisit, A.

Date: 2025-07-25 · Version: 1
DOI: 10.1101/2025.07.22.666036

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study resolves the ectodomain structure of the plant-specific LRR‑RLK CARD1 (HPCA1) and reveals a surface‑exposed copper ion coordinated by histidines that is essential for hydrogen peroxide signaling. Combined structural, genetic, and biochemical analyses show that previously identified cysteine residues are not required for signal perception, establishing CARD1 as the first copper‑dependent redox receptor.

quinone signaling reactive oxygen species LRR‑RLK copper‑dependent receptor hydrogen peroxide signaling

Papaver S-determinants trigger an integrated network of mitochondrially derived ROS and disruption of energy metabolism in incompatible pollen tubes

Authors: Wang, L., Hsiao, A.-S., Carli, J., Raza, A., Lin, Z., Arnaud, D., Davies, J., Franklin-Tong, V. E., Smirnoff, N., Bosch, M.

Date: 2025-06-27 · Version: 1
DOI: 10.1101/2025.06.26.661469

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reconstitutes Papaver rhoeas self‑incompatibility (SI) in Arabidopsis thaliana by expressing the pollen S‑determinant PrpS, revealing that SI triggers a rapid Ca2+‑dependent signaling cascade that leads to mitochondrial H2O2 production, metabolic collapse, and programmed cell death. Using a genetically encoded H2O2 sensor and metabolic assays, the authors show that early mitochondrial disruption, driven by altered Ca2+, cytosolic pH, and distinct ROS sources, is central to the SI response.

self-incompatibility reactive oxygen species mitochondrial disruption Ca2+ signaling Arabidopsis thaliana

Multi-Omics Analysis of Heat Stress-Induced Memory in Arabidopsis

Authors: Thirumlaikumar, V. P. P., Yu, L., Arora, D., Mubeen, U., Wisniewski, A., Walther, D., Giavalisco, P., Alseekh, S., DL Nelson, A., Skirycz, A., Balazadeh, S.

Date: 2025-06-23 · Version: 1
DOI: 10.1101/2025.06.19.660594

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses a high‑throughput comparative multi‑omics strategy to profile transcript, metabolite, and protein dynamics in Arabidopsis thaliana seedlings throughout the heat‑stress memory (HSM) phase following acquired thermotolerance. Early recovery stages show rapid transcriptional activation of memory‑related genes, while protein levels stay elevated longer, and distinct metabolite patterns emerge, highlighting temporal layers of the memory process.

heat stress acquired thermotolerance heat stress memory multi-omics Arabidopsis thaliana

Non-Thermal Plasma Activated Water is an Effective Nitrogen Fertilizer Alternative for Arabidopsis thaliana

Authors: Kizer, J. J., Robinson, C. D., Lucas, T., Shannon, S., Hernandez, R., Stapelmann, K., Rojas-Pierce, M.

Date: 2025-06-17 · Version: 1
DOI: 10.1101/2025.06.12.659237

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compared two plasma‑activated water (PAW) solutions with different H₂O₂ levels, produced by a radio‑frequency glow discharge, on Arabidopsis thaliana growth and stress responses. PAW lacking detectable H₂O₂ promoted seedling growth and induced nitrogen‑assimilation genes, while H₂O₂‑containing PAW did not affect growth but enhanced root performance under heat stress; mature plants fertilized with H₂O₂‑free PAW performed comparably to nitrate controls. These results indicate PAW can replace NO₃⁻ fertilizers provided H₂O₂ levels are carefully managed.

plasma activated water hydrogen peroxide reactive oxygen species nitrogen uptake heat stress

Evolutionary origin and functional diversification of plant GBF1-type ARF guanine-nucleotide exchange factors

Authors: Singh, M. K., Lauster, T., Huhn, K., Richter, S., Kientz, M., Neher, R. A., Juergens, G.

Date: 2025-06-06 · Version: 1
DOI: 10.1101/2025.06.03.657657

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reconstructed the evolutionary history of plant-specific GBF1-type ARF-GEFs by building phylogenetic trees and ortho‑synteny groups, identifying orthologs of AtGNOM and AtGNL1 across species. Functional analyses using transgenic Arabidopsis lines and yeast two‑hybrid assays revealed how duplication and loss events diversified GNOM paralogs, separating polar recycling from secretory trafficking functions.

GBF1-type ARF‑GEF phylogenetic analysis ortho‑synteny polar recycling yeast two‑hybrid

A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants

Authors: Ueno, R., Ito, S., Oyama, T.

Date: 2025-05-30 · Version: 1
DOI: 10.1101/2025.05.27.656507

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a CRISPR/Cas9‑based restoration system (CiRBS) that reactivates a disabled luciferase reporter (LUC40Ins26bp) in transgenic Arabidopsis, enabling long‑term single‑cell bioluminescence monitoring. Restoration occurs within 24 h after particle‑bombardment‑mediated CRISPR delivery, with ~7 % of cells regaining luminescence and most restored cells carrying a single correctly edited chromosome, facilitating reliable analysis of cellular gene‑expression heterogeneity.

CRISPR/Cas9 bioluminescence reporter particle bombardment single‑cell gene expression Arabidopsis thaliana

m6A RNA methylation attenuates thermotolerance in Arabidopsis

Authors: Shekhawat, K., Sheikh, A., Nawaz, K., Fatima, A., Alzayed, W., Nagaranjan, A. P., Hirt, H.

Date: 2025-05-23 · Version: 1
DOI: 10.1101/2025.05.22.655480

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that N6‑methyladenosine (m6A) RNA methylation acts as a negative regulator of thermotolerance in Arabidopsis thaliana, with loss of m6A increasing heat‑responsive gene expression and mRNA stability. Heat shock triggers a transient reduction of m6A levels, which is linked to enrichment of the H3K4me3 histone mark at target loci, enhancing transcription of heat shock proteins. These findings reveal a coordinated interplay between RNA methylation and chromatin modifications that fine‑tunes the plant heat stress response.

heat stress m6A RNA methylation thermotolerance Arabidopsis thaliana H3K4me3 histone modification

Integrative analysis of plant responses to a combination of water deficit, heat stress and eCO2 reveals a role for OST1 and SLAH3 in regulating stomatal responses

Authors: Pelaez-Vico, M. A., Sinha, R., Ghani, A., Lopez-Climent, M. F., Joshi, T., Fritschi, F. B., Zandalinas, S. I., Mittler, R.

Date: 2025-05-11 · Version: 1
DOI: 10.1101/2025.05.07.652739

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis thaliana integrates physiological, genetic, hormonal, and transcriptomic responses to combined water deficit, heat stress, and elevated CO2. Results show that stomatal aperture under these complex stress combinations is governed by a specific set of regulators, including nitric oxide, OPEN STOMATA 1, and the SLAH3 anion channel, distinct from those active under simpler stress conditions. This reveals a hierarchical stomatal stress code that could inform future research on plant resilience to global change.

Global Change Factor combination stomatal aperture regulation Arabidopsis thaliana water deficit heat stress

MLO-mediated Ca2+ influx regulates root hair tip growth in Arabidopsis

Authors: Ogawa, S. T., Zhang, W., Staiger, C. J., Kessler, S. A.

Date: 2025-04-10 · Version: 1
DOI: 10.1101/2025.04.08.647801

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that constitutively active MLO (faNTA) can rescue the fer-4 root‑hair bursting and polarity defects, restoring tip‑focused cytosolic Ca2+ oscillations and ROS accumulation, highlighting a FERONIA‑MLO signaling module that governs Ca2+ influx and ROS production during root‑hair tip growth. Genetic analysis of mlo15-4 further confirms MLO15 as a key regulator of these Ca2+ and ROS dynamics. The findings suggest MLO proteins act downstream of FER to coordinate calcium and ROS signals essential for root‑hair integrity.

root hair tip growth calcium signaling reactive oxygen species FERONIA receptor kinase MLO proteins
Previous Page 2 of 3 Next