The study used QTL mapping in two F1 Plasmopara viticola populations to locate avirulence genes linked to grapevine resistance loci Rpv3.1, Rpv10, and Rpv12, confirming AvrRpv3.1 and identifying AvrRpv12, which harbors large deletions of RXLR effector genes. Additionally, a dominant locus responsible for partial Rpv10 breakdown was discovered, revealing diverse evolutionary mechanisms—including structural rearrangements and admixture—that enable the pathogen to overcome host resistance.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
Using hydathode-focused inoculation, the study mapped a major QTL on Arabidopsis chromosome 5 and identified the CNL-type immune receptor SUT1 as a novel resistance gene that restricts early colonization of Xanthomonas campestris pv. campestris in hydathodes. Functional analyses showed SUT1 acts independently of the known RKS1/ZAR1 complex and provides tissue‑specific resistance, being effective primarily in hydathodes but not in xylem.
Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana
Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.
The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.
Impaired methyl recycling induces substantial shifts in sulfur utilization in Arabidopsis
Authors: Tremblay, B. J.-M., Adeel, S. A., Saechao, M., Dong, Y., Andrianasolo, E., Steele, J. M., Traa, A., Yogadasan, N., Waduwara-Jayabahu, I., Katzenback, B. A., Hell, R., Wirtz, M., Moffatt, B. A.
Reduced activity of methylthioadenosine (MTA) nucleosidase causes MTA over‑accumulation in reproductive tissues, leading to lowered cysteine, methionine, and S‑adenosylmethionine levels and altered sulfur and energy metabolism. These metabolic disturbances trigger misregulation of cell‑cycle progression, widespread down‑regulation of developmental genes, and genome‑wide changes in DNA methylation patterns, highlighting the extensive role of MTA recycling in plant growth and methyl‑index maintenance.
Authors: Anumalla, M., Khanna, A., Catolos, M., Ramos, J., Sta. Cruz, M. T., Venkateshwarlu, C., Konijerla, J., Pradhan, S. K., Dash, S. K., Das, Y., Chowdhury, D., Chetia, S. K., Das, J., Nath, P., Merugumala, G. R., Roy, B., Pradhan, N., Jana, M., Dana, I., Debnath, S., Nath, A., Prasad Singh, S., Iftekharuddaula, K. M., Ghosal, S., Ali, M., Khanam, S., Ul Islam, M. M., Faruquee, M., Tonny, H. J., Hasan, M. R., Rahman, A., Ali, J., Sinha, P., Singh, V., Rafiqul Islam, M., Bhosale, S., Kohli, A., Bhardwaj, H. R., Hussain, W.
The study screened 6,274 elite rice genotypes for submergence and stagnant flooding tolerance, identifying 89 lines with superior performance, including 37 that outperformed SUB1A introgression lines by 40‑50%. These elite lines harbor 86 key QTLs/genes and were used in a novel Transition from Trait to Environment (TTE) breeding strategy, achieving a 65% genetic gain for submergence tolerance and demonstrating strong performance in flood‑prone regions of India and Bangladesh.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.
Arabidopsis REM transcription factors and GDE1 shape the DNA methylation landscape through the recruitment of RNA Polymerase IV transcription complexes.
Authors: Wu, Z., Xue, Y., Wang, S., Shih, Y.-H., Zhong, Z., Feng, S., Draper, J., Lu, A., Sha, J., Li, L., Wohlschlegel, J., Wu, K., Jacobsen, S. E.
The study identifies four Arabidopsis REM transcription factors (VDD, VAL, REM12, REM13) that bind specific DNA sequences and, together with GDE1, recruit RNA polymerase IV to produce 24‑nt siRNAs that direct DNA methylation at designated loci. Loss of GDE1 causes Pol IV complexes to relocalize to sites bound by REM8, indicating that REM proteins provide sequence‑specific cues for epigenetic patterning.
The study reveals that a set of REPRODUCTIVE MERISTEM (REM) transcription factors, termed RIMs, are essential for directing RNA‑directed DNA methylation (RdDM) to CLSY3 targets in a sex‑specific manner in Arabidopsis reproductive tissues. Disruption of RIM DNA‑binding domains or their target motifs abolishes RdDM at these loci, demonstrating that genetic cues can guide de novo methylation patterns.
The study generated two allotriploid Brassica hybrids (ArAnCn) to investigate asymmetric subgenome dominance, finding that the Cn subgenome dominates despite the An subgenome showing highest expression levels. Increased density of accessible chromatin regions (ACRs) in the Cn subgenome correlates with dominant gene expression, while changes in CHH methylation and specific RNA‑directed DNA methylation pathway mutants affect subgenome bias.