The study examined how dual‑purpose hemp (Cannabis sativa) adjusts to different phosphate levels, showing that flower biomass is maintained unless phosphate is completely removed. Integrated physiological measurements and transcriptomic profiling revealed that phosphate is reallocated to flowers via glycolytic bypasses and organic phosphate release, while key regulatory genes followed expected patterns but did not suppress uptake at high phosphate, leading to nitrate depletion that limits growth.
The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.
Using ten Phaeodactylum tricornutum mutant strains with graded constitutive Lhcx1 expression, the study links NPQ induction under high light to physiological outcomes (oxidized QA, increased cyclic electron flow) and extensive transcriptomic reprogramming, affecting nearly half the genome. The approach demonstrates that higher NPQ mitigates PSII damage, boosts ATP production for repair, and drives distinct gene regulatory networks, providing a model framework for dissecting photosynthetic and gene expression integration.
A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha
Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.
The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.
The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.
Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.
The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.
The study used Weighted Gene Correlation Network Analysis (WGCNA) and GENIE3 to construct co‑expression modules and gene regulatory networks (GRNs) in barley subjected to Fusarium head blight and drought stress. Integration of these approaches highlighted overlapping regulatory patterns, pinpointing WRKY transcription factors as central to FHB response, while bHLH and NAC family members showed stress‑specific roles. Promoter motif enrichment further validated predicted TF‑target interactions, offering candidate regulators for future functional validation.
The authors used computational simulations of plant cellular metabolism under historical atmospheric conditions to demonstrate that reduced CO₂ and increased aridity can drive the evolutionary transition from C₃ to CAM photosynthesis. Their results suggest that while future elevated CO₂ may favor a reversion to C₃-like behavior, drought consistently promotes CAM regardless of CO₂ or temperature, and a minimum O₂ level is required for nocturnal respiration in CAM.
The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.