Latest 4 Papers

Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes

Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701158

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.

tomato pathogen compatibility transcriptomics co‑expression network Arabidopsis interactome

SlATG8f enhances tomato thermotolerance and fruit quality via autophagy and HS pathways

Authors: Cheng, q., Xu, w., wen, c., He, Z., Song, L.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.678159

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The researchers created tomato lines overexpressing the autophagy gene SlATG8f and evaluated their performance under high-temperature stress. qRT‑PCR and physiological measurements revealed that SlATG8f overexpression enhances expression of autophagy‑related and heat‑shock protein genes, accelerates fruit ripening, and improves fruit quality under heat stress.

SlATG8f autophagy high-temperature stress tomato fruit quality

Rapid population flux in bacterial spot xanthomonads during a transition in dominance between two genotypes in consecutive tomato production seasons and identification of a new species Xanthomonas oklahomensis sp. nov.

Authors: Johnson, B., Subedi, A., Damicone, J., Goss, E., Jones, J. B., Jibrin, M. O.

Date: 2025-04-16 · Version: 1
DOI: 10.1101/2025.04.13.648550

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study examined Xanthomonas strains causing bacterial spot on tomato in Oklahoma fields during 2018‑2019, revealing a shift from X. euvesicatoria pv. euvesicatoria (Xee) to X. euvesicatoria pv. perforans (Xep) race T4, which also expanded to pepper. Phenotypic assays and whole‑genome sequencing highlighted differences in race composition, host range, copper sensitivity, and effector repertoires, and identified a novel species, Xanthomonas oklahomensis.

bacterial spot Xanthomonas euvesicatoria population shift phylogenetic analysis copper resistance

Phenotypic similarity of NAD(P)-Malic Enzymes in Tomato: Unveiling Patterns of Convergent and Parallel Evolution

Authors: Martinatto, A., Bohm, J. M., Bustamante, C., Pancaldi, F., Schranz, M. E., Tronconi, M.

Date: 2025-02-16 · Version: 1
DOI: 10.1101/2025.02.12.637823

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study characterizes all seven malic enzyme genes in tomato, analyzing their tissue-specific expression, temperature and ethylene responsiveness, and linking specific isoforms to metabolic processes such as starch and lipid biosynthesis during fruit development. Phylogenetic, synteny, recombinant protein biochemical assays, and promoter analyses were used to compare tomato enzymes with Arabidopsis counterparts, revealing complex evolutionary dynamics that decouple phylogeny from functional orthology.

malic enzyme NADP-ME Solanum lycopersicum gene expression phylogenetic analysis