Latest 4 Papers

Ethylene-induced host responses enhance resistance against the root-parasitic plant Phelipanche aegyptiaca

Authors: Park, S., Yang, C., Westwood, J.

Date: 2025-10-06 · Version: 1
DOI: 10.1101/2025.10.05.680554

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study demonstrates that ethylene signaling contributes to host resistance against the root parasitic plant Phelipanche aegyptiaca, as both water stress and parasitism activate ethylene responses in Arabidopsis roots. Application of the ethylene precursor ACC reduced parasite attachment, and mutants in ethylene signaling components (ETR1, CTR1) showed altered tolerance, highlighting ethylene-mediated defenses as a potential strategy for crop protection.

Phelipanche aegyptiaca ethylene signaling host resistance parasitic weed Arabidopsis thaliana

Comparative gene regulatory network mapping of Brassicaceae members with differential drought tolerance

Authors: Pandiarajan, R., Lin, C.-W., Sauer, M., Rothballer, S. T., Marin-de la Rosa, N., Schwehn, P., Papadopoulou, E., Mairhormann, B., Falter-Braun, P.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.24.668636

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study mapped drought‑responsive gene regulatory networks in Arabidopsis thaliana, its tolerant relative Arabidopsis lyrata, and Eutrema salsugineum using yeast one‑hybrid screens of orthologous promoters, revealing higher network connectivity and specific TF‑promoter interactions in the tolerant species. Notable findings include an Esa‑specific expansion of bZIP interactions, differential ABA‑signalling edges, and the identification of ASIL2 as a novel stress‑responsive factor, providing a comparative framework for improving crop drought tolerance.

drought tolerance gene regulatory network Brassicaceae transcription factor interactions ABA signaling

Comparative multi-omics profiling of Gossypium hirsutum and Gossypium barbadense fibers at high temporal resolution reveals key differences in polysaccharide composition and associated glycosyltransferases

Authors: Swaminathan, S., Lee, Y., Grover, C. E., DeTemple, M. F., Mugisha, A. S., Sichterman, L. E., Yang, P., Xie, J., Wendel, J. F., Szymanski, D. B., Zabotina, O. A.

Date: 2025-04-30 · Version: 1
DOI: 10.1101/2025.04.26.650795

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study performed daily large-scale glycome, transcriptome, and proteome profiling of developing fibers from the two cultivated cotton species, Gossypium barbadense and G. hirsutum, across primary and secondary cell wall stages. It identified delayed cellulose accumulation and distinct compositions of xyloglucans, homogalacturonans, rhamnogalacturonan‑I, and heteroxylans in G. barbadense, along with higher expression of specific glycosyltransferases and expansins, suggesting these molecular differences underlie the superior fiber length and strength of G. barbadense.

cotton fiber development polysaccharide composition glycome profiling transcriptomics glycosyltransferases

Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation

Authors: Xu, X., Passalacqua, M., Rice, B., Demesa-Arevalo, E., Kojima, M., Takebayashi, Y., Harris, B., Sakakibara, H., Gallavotti, A., Gillis, J., Jackson, D.

Date: 2025-04-17 · Version: 2
DOI: 10.1101/2024.03.04.583414

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study finely dissected shoot stem cell–enriched tissues from maize and Arabidopsis thaliana and optimized single‑cell RNA‑seq protocols to reliably capture CLAVATA3 and WUSCHEL‑expressing cells. Cross‑species comparison and functional validation, including spatial transcriptomics and mutant analyses, revealed conserved ribosome‑associated RNA‑binding proteins and sugar‑kinase families as key regulators linked to shoot development and yield traits.

single-cell RNA sequencing shoot stem cells Arabidopsis thaliana Zea mays stem cell regulators