The study reanalyzed 1,107 public grapevine RNA‑seq datasets to build condition‑specific gene expression atlases and a whole‑genome co‑expression network associated with drought stress, and deployed these resources via a web‑based Hydric Stress Atlas App. Network topology analysis identified candidate hub genes that could serve as molecular markers or targets for gene editing to improve drought tolerance in Vitis vinifera.
Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana
Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.
The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.
Priming of retrograde signaling in wheat across multiple natural environments reveal how responses to dynamic stimuli can be integrated to alter yield, yield stability and water productivity
Authors: Bowerman, A. F., Moore, M., Yadav, A., Zhang, J., Mortimer, M. D., Plskova, Z., Tee, E. E., Au, E. K., Collinge, D. P., Estavillo, G. M., Howitt, C. A., Chan, K. X., Rebetzke, G. J., Pogson, B. J.
The study generated wheat (Triticum aestivum) mutants with targeted deletions in the SAL gene family (TaSAL1 and TaSAL2) to assess the impact of chloroplast-to-nucleus retrograde signaling on field performance. Across 15 diverse Australian field trials, TaSAL2 deletions conferred 4–8% higher yields and improved water productivity by maintaining photosynthetic efficiency and dynamic stomatal control under drought, whereas TaSAL1 deletions reduced yields. These results demonstrate that locus‑specific retrograde signaling modifications can simultaneously enhance yield and stress resilience in a major crop.
Impaired methyl recycling induces substantial shifts in sulfur utilization in Arabidopsis
Authors: Tremblay, B. J.-M., Adeel, S. A., Saechao, M., Dong, Y., Andrianasolo, E., Steele, J. M., Traa, A., Yogadasan, N., Waduwara-Jayabahu, I., Katzenback, B. A., Hell, R., Wirtz, M., Moffatt, B. A.
Reduced activity of methylthioadenosine (MTA) nucleosidase causes MTA over‑accumulation in reproductive tissues, leading to lowered cysteine, methionine, and S‑adenosylmethionine levels and altered sulfur and energy metabolism. These metabolic disturbances trigger misregulation of cell‑cycle progression, widespread down‑regulation of developmental genes, and genome‑wide changes in DNA methylation patterns, highlighting the extensive role of MTA recycling in plant growth and methyl‑index maintenance.
Arabidopsis REM transcription factors and GDE1 shape the DNA methylation landscape through the recruitment of RNA Polymerase IV transcription complexes.
Authors: Wu, Z., Xue, Y., Wang, S., Shih, Y.-H., Zhong, Z., Feng, S., Draper, J., Lu, A., Sha, J., Li, L., Wohlschlegel, J., Wu, K., Jacobsen, S. E.
The study identifies four Arabidopsis REM transcription factors (VDD, VAL, REM12, REM13) that bind specific DNA sequences and, together with GDE1, recruit RNA polymerase IV to produce 24‑nt siRNAs that direct DNA methylation at designated loci. Loss of GDE1 causes Pol IV complexes to relocalize to sites bound by REM8, indicating that REM proteins provide sequence‑specific cues for epigenetic patterning.
The study reveals that a set of REPRODUCTIVE MERISTEM (REM) transcription factors, termed RIMs, are essential for directing RNA‑directed DNA methylation (RdDM) to CLSY3 targets in a sex‑specific manner in Arabidopsis reproductive tissues. Disruption of RIM DNA‑binding domains or their target motifs abolishes RdDM at these loci, demonstrating that genetic cues can guide de novo methylation patterns.
The study generated two allotriploid Brassica hybrids (ArAnCn) to investigate asymmetric subgenome dominance, finding that the Cn subgenome dominates despite the An subgenome showing highest expression levels. Increased density of accessible chromatin regions (ACRs) in the Cn subgenome correlates with dominant gene expression, while changes in CHH methylation and specific RNA‑directed DNA methylation pathway mutants affect subgenome bias.
Assembly and annotation of Solanum dulcamara and Solanum nigrum plant genomes, two nightshades with different susceptibilities to Ralstonia solanacearum
Authors: Franco Ortega, S., James, S. R., Gilbert, L., Hogg, K., Stevens, H., Daff, J., Friman, V. P., Harper, A. L.
The study generated de‑novo genome assemblies for the resistant wild relative Solanum dulcamara and the susceptible Solanum nigrum using a hybrid Oxford Nanopore and Illumina sequencing strategy. Comparative genomic analyses identified auxin‑transport genes and novel pattern recognition receptor orthogroups unique to resistant species, as well as differential gene‑body methylation that may underlie resistance to Ralstonia solanacearum.
Robustness of high-throughput prediction of leaf ecophysiological traits using near infra-red spectroscopy and poro-fluorometry
Authors: Coindre, E., Boulord, R., Chir, L., Freitas, V., Ryckewaert, M., Laisne, T., Bouckenooghe, V., Lis, M., Cabrera-Bosquet, L., Doligez, A., Simonneau, T., Pallas, B., Coupel-Ledru, A., Segura, V.
The study evaluated high‑throughput spectroscopy and poro‑fluorometry to predict leaf morphological and ecophysiological traits in a grapevine diversity panel under well‑watered and drought conditions. Spectroscopy reliably estimated leaf mass per area and water content, while poro‑fluorometry accurately predicted net CO2 assimilation, and the derived predicted traits showed substantial broad‑sense heritability. These results demonstrate that non‑destructive, rapid phenotyping tools can support genetic analyses of drought‑related traits in grapevine.