Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Effects of atmospheric CO2 levels on the susceptibility of maize to diverse pathogens

Authors: Khwanbua, E., Qi, Y., Ssengo, J., Liu, P., Graham, M. A., Whitham, S.

Date: 2026-01-02 · Version: 1
DOI: 10.64898/2025.12.31.697224

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.

elevated CO₂ maize plant immunity pathogen susceptibility C4 crops

Temporal analysis of physiological phenotypes identifies novel metabolic and genetic underpinnings of senescence in maize

Authors: Brar, M. S., Kumar, R., Kunduru, B., McMahan, C. S., Tharayil, N., Sekhon, R. S.

Date: 2025-03-12 · Version: 1
DOI: 10.1101/2025.03.07.641920

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study generated a temporal physiological and metabolomic map of leaf senescence in diverse maize inbred lines differing in stay‑green phenotype, identifying 84 metabolites associated with senescence and distinct metabolic signatures between stay‑green and non‑stay‑green lines. Integration of metabolite data with genomic information uncovered 56 candidate genes, and reverse‑genetic validation in maize and Arabidopsis demonstrated conserved roles for phenylpropanoids such as naringenin chalcone and eriodictyol in regulating senescence.

leaf senescence staygreen metabolomics phenylpropanoids maize