Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Integrative epigenomic analysis uncovers asymmetry of enhancer activity in Brassica napus

Authors: Zanini, S. F., Rockenbach, K., Nguyen, A., Arslan, K., Yildiz, G., Snowdon, R., Golicz, A. A.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.31.685802

Category: Plant Biology

Model Organism: Brassica napus

AI Summary

The study mapped the cis‑regulatory landscape of the winter rapeseed cultivar Express617, identifying thousands of novel regulatory elements and characterizing super‑enhancers that are asymmetrically enriched in the Cn subgenome of Brassica napus. An in‑silico pipeline combining population‑level expression data and machine‑learning models revealed that many SE‑associated genes are expressed above predicted levels, and structural variants disrupting SEs lead to reduced gene expression, highlighting their functional importance for gene regulation and breeding.

cis-regulatory elements super-enhancers Brassica napus chromatin accessibility DNA methylation

The dynamics of ACR and DNA methylation impact asymmetric subgenome dominance in allotriploid Brassica species

Authors: dai, c., Dou, S., quan, c.

Date: 2025-02-20 · Version: 1
DOI: 10.1101/2025.02.16.638486

Category: Plant Biology

Model Organism: Brassica napus

AI Summary

The study generated two allotriploid Brassica hybrids (ArAnCn) to investigate asymmetric subgenome dominance, finding that the Cn subgenome dominates despite the An subgenome showing highest expression levels. Increased density of accessible chromatin regions (ACRs) in the Cn subgenome correlates with dominant gene expression, while changes in CHH methylation and specific RNA‑directed DNA methylation pathway mutants affect subgenome bias.

polyploidy subgenome dominance accessible chromatin regions DNA methylation Brassica allotriploids