The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.
The genome of the vining fern Lygodium microphyllum highlights genomic and functional differences between life phases of an invasive plant
Authors: Pelosi, J., Davenport, R., Kuo, L.-Y., Gray, L. N., Dant, A. J., Kim, E. H., Li, F.-W., Dlugosch, K. M., Krabbenhoft, T. J., Barbazuk, W. B., Sessa, E. B.
The study presents a chromosome-level reference genome for the invasive fern Lygodium microphyllum and compares the transcriptomic and epigenomic profiles of its haploid gametophyte and diploid sporophyte phases, revealing differential regulation of developmental genes and similar methylation patterns across tissues. Base‑pair resolution methylome data and freezing‑stress experiments show that each life phase employs distinct molecular pathways for stress response, emphasizing the importance of considering both phases in invasive‑species management.
The study investigates the Arabidopsis ribosomal protein RPS6A and its role in auxin‑related root growth, revealing that rps6a mutants display shortened primary roots, fewer lateral roots, and defective vasculature that are not rescued by exogenous auxin. Cell biological observations and global transcriptome profiling show weakened auxin signaling and reduced levels of PIN auxin transporters in the mutant, indicating a non‑canonical function of the ribosomal subunit in auxin pathways.
Arabidopsis REM transcription factors and GDE1 shape the DNA methylation landscape through the recruitment of RNA Polymerase IV transcription complexes.
Authors: Wu, Z., Xue, Y., Wang, S., Shih, Y.-H., Zhong, Z., Feng, S., Draper, J., Lu, A., Sha, J., Li, L., Wohlschlegel, J., Wu, K., Jacobsen, S. E.
The study identifies four Arabidopsis REM transcription factors (VDD, VAL, REM12, REM13) that bind specific DNA sequences and, together with GDE1, recruit RNA polymerase IV to produce 24‑nt siRNAs that direct DNA methylation at designated loci. Loss of GDE1 causes Pol IV complexes to relocalize to sites bound by REM8, indicating that REM proteins provide sequence‑specific cues for epigenetic patterning.
The study reveals that a set of REPRODUCTIVE MERISTEM (REM) transcription factors, termed RIMs, are essential for directing RNA‑directed DNA methylation (RdDM) to CLSY3 targets in a sex‑specific manner in Arabidopsis reproductive tissues. Disruption of RIM DNA‑binding domains or their target motifs abolishes RdDM at these loci, demonstrating that genetic cues can guide de novo methylation patterns.
The study generated two allotriploid Brassica hybrids (ArAnCn) to investigate asymmetric subgenome dominance, finding that the Cn subgenome dominates despite the An subgenome showing highest expression levels. Increased density of accessible chromatin regions (ACRs) in the Cn subgenome correlates with dominant gene expression, while changes in CHH methylation and specific RNA‑directed DNA methylation pathway mutants affect subgenome bias.
The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.
Assembly and annotation of Solanum dulcamara and Solanum nigrum plant genomes, two nightshades with different susceptibilities to Ralstonia solanacearum
Authors: Franco Ortega, S., James, S. R., Gilbert, L., Hogg, K., Stevens, H., Daff, J., Friman, V. P., Harper, A. L.
The study generated de‑novo genome assemblies for the resistant wild relative Solanum dulcamara and the susceptible Solanum nigrum using a hybrid Oxford Nanopore and Illumina sequencing strategy. Comparative genomic analyses identified auxin‑transport genes and novel pattern recognition receptor orthogroups unique to resistant species, as well as differential gene‑body methylation that may underlie resistance to Ralstonia solanacearum.