The study examined gene expression, DNA methylation, and small RNA profiles in a Citrus hybrid (C. reticulata × C. australasica) using haplotype‑resolved subgenome assemblies, revealing allele‑specific expression and asymmetric CHH methylation that correlated with increased transcription and 24‑nt siRNA accumulation at promoters. This unconventional association suggests RNA‑directed DNA methylation (RdDM) can activate transcription in citrus fruit and provides a pipeline for epigenomic analysis of complex hybrids relevant to disease resistance breeding.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study generated a phenotypic dataset for 550 Lactuca accessions, including 20 wild relatives, and applied an iterative two‑step GWAS using a jointly processed SNP set for cultivated lettuce (L. sativa) and its wild progenitor (L. serriola) to dissect trait loci. Known and novel QTLs for anthocyanin accumulation, leaf morphology, and pathogen resistance were identified, with several L. serriola‑specific QTLs revealing unique genetic architectures, underscoring the breeding value of wild lettuce species.
Tomato leaf transcriptomic changes promoted by long-term water scarcity stress can be largely prevented by a fungal-based biostimulant
Authors: Lopez-Serrano, L., Ferez-Gomez, A., Romero-Aranda, R., Jaime Fernandez, E., Leal Lopez, J., Fernandez Baroja, E., Almagro, G., Dolezal, K., Novak, O., Diaz, L., Bautista, R., Leon Morcillo, R. J., Pozueta Romero, J.
Foliar application of Trichoderma harzianum cell‑free culture filtrates (CF) increased fruit yield, root growth, and photosynthesis in a commercial tomato cultivar under prolonged water deficit in a Mediterranean greenhouse. Integrated physiological, metabolite, and transcriptomic analyses revealed that CF mitigated drought‑induced changes, suppressing about half of water‑stress responsive genes, thereby reducing the plant’s transcriptional sensitivity to water scarcity.
The study used chlorophyll fluorescence imaging to map non-photochemical quenching (NPQ) gradients along barley leaf axes and found heat stress attenuates NPQ induction, revealing spatial heterogeneity in stress responses. Genome‑wide association and transcriptomic analyses identified candidate genes, notably HORVU.MOREX.r3.3HG0262630, that mediate region‑specific heat responses, highlighting pathways for improving cereal heat resilience.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study applied Spatial Analysis of Field Trials with Splines (SpATS) and Neighbor Genome-Wide Association Study (Neighbor GWAS) to barley field data, revealing that neighboring genotypes contribute to spatial variation in disease damage. Neighbor GWAS identified variants on chromosome 7H that modestly affect net form net blotch and scald resistance, suggesting that genotype mixtures could mitigate pest damage.
The study evaluated natural genetic variation in non-photochemical quenching and photoprotection across 861 sorghum accessions grown in the field over two years, revealing moderate to high broad-sense heritability for chlorophyll fluorescence traits. By integrating genome-wide association studies (GWAS) with transcriptome-wide association studies (TWAS) and covariance analyses, the authors identified 110 high-confidence candidate genes underlying photoprotection, highlighting a complex, polygenic architecture for these traits.
Ethylene and ROS Signaling Are Key Regulators of Lateral Root Development under Salt Stress in Tomato
Authors: Rahmati Ishka, M., Zhao, J., Sussman, H., Mohanty, D., Craft, E., Yu, L., Pineros, M., Tester, M., Kawa, D., Mittler, R., Nelson, A., Fei, Z., Julkowska, M. M.
The study examined salt-induced alterations in root system architecture across a diverse panel of wild and cultivated tomato accessions, identifying tolerant varieties with distinct lateral root strategies. By combining Bulk Segregant Analysis of an F2 population with GWAS, the authors pinpointed 22 candidate genes, further narrowing to two key regulators through RNA‑Seq and functional assays involving ethylene and ROS profiling. These findings reveal genetic targets for improving salt resilience in tomato root development.
Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana
Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.
The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.