Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 53 Papers

Physics-Informed Neural Network Methods for Predicting Plant Height Development

Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699475

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.

Physics-Informed Neural Network logistic ODE Long Short-Term Memory plant height prediction wheat

Membrane-binding domains define REMORIN phylogeny and provide a predicted structural basis for distinctive membrane nano-environments

Authors: Biermann, D., Gronnier, J.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.22.695504

Category: Plant Biology

Model Organism: General

AI Summary

The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.

REMORIN proteins C-terminal domain membrane nano-organization phylogenetic analysis structural bioinformatics

Transcriptome and epigenome dynamics underpin cold stress priming in Arabidopsis

Authors: Sadykova, M., Saze, H.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694799

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.

stress priming DNA methylation cold stress Arabidopsis thaliana transcriptome dynamics

Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens

Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.15.692859

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.

tandem kinase proteins HMA domain disease resistance barley wheat

Targeting granule initiation and amyloplast structure to create giant starch granules in wheat

Authors: McNelly, R., Esch, L., Ngai, Q. Y., Pohan, K., Stringer, R., Fahy, B., Warren, F., Seung, D.

Date: 2025-12-15 · Version: 1
DOI: 10.64898/2025.12.12.693964

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.

starch granule size PARC6 BGC1 wheat giant starch granules

DNA methylation mediates transcriptional stability and transposon-driven trans-regulation under drought in wheat

Authors: Reynolds, I. J., Barratt, L. J., Harper, A. L.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.04.692301

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.

drought stress DNA methylation Triticum aestivum ROS1a demethylase transposable elements

Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions

Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.

Date: 2025-12-04 · Version: 1
DOI: 10.64898/2025.12.02.691979

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.

wheat Fusarium head blight deoxynivalenol untargeted metabolomics diterpene conjugates

CHLOROPLAST GENOME AND PHYLOGENETIC ANALYSIS OF KATMON (Dillenia philippinensis Rolfe), A PHILIPPINE ENDEMIC FRUIT

Authors: Lucero, J. J. M., Munoz, J. A. M., Aglibot, L. Y., Cardona, D. E. M., Gueco, L. S., Manalang, A. P., Villanueva, J. C., Alonday, R. C. S.

Date: 2025-11-27 · Version: 1
DOI: 10.1101/2025.11.26.690882

Category: Plant Biology

Model Organism: Dillenia philippinensis

AI Summary

The complete chloroplast genome of the endemic fruit species Dillenia philippinensis was sequenced, assembled, and annotated, revealing a 161,591‑bp quadripartite structure with 113 unique genes. Comparative analyses identified simple sequence repeats, codon usage patterns, and phylogenetic placement close to D. suffroticosa, providing a genomic resource for future breeding and conservation efforts.

Dillenia philippinensis chloroplast genome Illumina NovaSeqX phylogenetic analysis simple sequence repeats

Rubisco Dark Inhibition in Angiosperms Shows a Complex Distribution Pattern

Authors: Nehls-Ramos, C., Carmo-Silva, E., Orr, D. J.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689527

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.

Rubisco dark inhibition flowering plants phylogenetic analysis photosynthetic regulation CO2-fixing enzyme

DNA Methylation Dynamics Reveal Unique Plant Responses and Transcriptional Reprogramming to Combined Heat and Phosphate Deficiency Stress

Authors: Lozano-Enguita, A., Victoria Baca-Gonzalez, V., Morillas-Montaez, A., Pascual, J., Valledor, L., del Pozo, J. C., Caro, E.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.19.689328

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.

DNA methylation heat stress phosphate deficiency Arabidopsis thaliana whole-genome bisulfite sequencing
Page 1 of 6 Next