Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 12 Papers

MYB59 is linked to natural variation of water use associated with warmer temperatures in Arabidopsis thaliana

Authors: Ferguson, J. N., Brendel, O., Bechtold, U.

Date: 2025-02-28 · Version: 1
DOI: 10.1101/2025.02.27.640580

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study surveyed vegetative water use and life‑history traits across Arabidopsis thaliana ecotypes in both controlled and outdoor environments to assess how climatic history shapes water‑use strategies. Trait‑climate correlations and genome‑wide association analyses uncovered that ecotypes from warmer regions exhibit higher water use, and identified MYB59 as a key gene whose temperature‑linked alleles affect water consumption, a finding validated using myb59 mutants. These results indicate that temperature‑driven adaptive differentiation partly explains intraspecific water‑use variation.

water-use variation Arabidopsis thaliana climate adaptation GWAS MYB59

Transcriptomic insights into the role of miR394 in the regulation of flowering time in Arabidopsis thaliana

Authors: Belen, F., Bernardi, Y., Reutemann, A., Vegetti, A., Dotto, M. C.

Date: 2025-02-20 · Version: 1
DOI: 10.1101/2025.02.15.638417

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.

miR394 flowering time Arabidopsis thaliana transcriptomics lncRNA
Previous Page 2 of 2