Latest 18 Papers

Multi-Omics Analysis of Heat Stress-Induced Memory in Arabidopsis

Authors: Thirumlaikumar, V. P. P., Yu, L., Arora, D., Mubeen, U., Wisniewski, A., Walther, D., Giavalisco, P., Alseekh, S., DL Nelson, A., Skirycz, A., Balazadeh, S.

Date: 2025-06-23 · Version: 1
DOI: 10.1101/2025.06.19.660594

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses a high‑throughput comparative multi‑omics strategy to profile transcript, metabolite, and protein dynamics in Arabidopsis thaliana seedlings throughout the heat‑stress memory (HSM) phase following acquired thermotolerance. Early recovery stages show rapid transcriptional activation of memory‑related genes, while protein levels stay elevated longer, and distinct metabolite patterns emerge, highlighting temporal layers of the memory process.

heat stress acquired thermotolerance heat stress memory multi-omics Arabidopsis thaliana

Non-Thermal Plasma Activated Water is an Effective Nitrogen Fertilizer Alternative for Arabidopsis thaliana

Authors: Kizer, J. J., Robinson, C. D., Lucas, T., Shannon, S., Hernandez, R., Stapelmann, K., Rojas-Pierce, M.

Date: 2025-06-17 · Version: 1
DOI: 10.1101/2025.06.12.659237

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compared two plasma‑activated water (PAW) solutions with different H₂O₂ levels, produced by a radio‑frequency glow discharge, on Arabidopsis thaliana growth and stress responses. PAW lacking detectable H₂O₂ promoted seedling growth and induced nitrogen‑assimilation genes, while H₂O₂‑containing PAW did not affect growth but enhanced root performance under heat stress; mature plants fertilized with H₂O₂‑free PAW performed comparably to nitrate controls. These results indicate PAW can replace NO₃⁻ fertilizers provided H₂O₂ levels are carefully managed.

plasma activated water hydrogen peroxide reactive oxygen species nitrogen uptake heat stress

m6A RNA methylation attenuates thermotolerance in Arabidopsis

Authors: Shekhawat, K., Sheikh, A., Nawaz, K., Fatima, A., Alzayed, W., Nagaranjan, A. P., Hirt, H.

Date: 2025-05-23 · Version: 1
DOI: 10.1101/2025.05.22.655480

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that N6‑methyladenosine (m6A) RNA methylation acts as a negative regulator of thermotolerance in Arabidopsis thaliana, with loss of m6A increasing heat‑responsive gene expression and mRNA stability. Heat shock triggers a transient reduction of m6A levels, which is linked to enrichment of the H3K4me3 histone mark at target loci, enhancing transcription of heat shock proteins. These findings reveal a coordinated interplay between RNA methylation and chromatin modifications that fine‑tunes the plant heat stress response.

heat stress m6A RNA methylation thermotolerance Arabidopsis thaliana H3K4me3 histone modification

Integrative analysis of plant responses to a combination of water deficit, heat stress and eCO2 reveals a role for OST1 and SLAH3 in regulating stomatal responses

Authors: Pelaez-Vico, M. A., Sinha, R., Ghani, A., Lopez-Climent, M. F., Joshi, T., Fritschi, F. B., Zandalinas, S. I., Mittler, R.

Date: 2025-05-11 · Version: 1
DOI: 10.1101/2025.05.07.652739

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis thaliana integrates physiological, genetic, hormonal, and transcriptomic responses to combined water deficit, heat stress, and elevated CO2. Results show that stomatal aperture under these complex stress combinations is governed by a specific set of regulators, including nitric oxide, OPEN STOMATA 1, and the SLAH3 anion channel, distinct from those active under simpler stress conditions. This reveals a hierarchical stomatal stress code that could inform future research on plant resilience to global change.

Global Change Factor combination stomatal aperture regulation Arabidopsis thaliana water deficit heat stress

SNRK3.15 is a crucial component of the sulfur deprivation response in Arabidopsis thaliana

Authors: Apodiakou, A., Heyneke, E., Alseekh, S., Pinsorn, P., Metzger, S., Kopriva, S., Schulze, W., Hoefgen, R., Whitcomb, S. J.

Date: 2025-05-03 · Version: 1
DOI: 10.1101/2025.04.29.651231

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the serine/threonine protein kinase CIPK14/SNRK3.15 as a regulator of sulfate‑deficiency responses in Arabidopsis thaliana seedlings, with mutants showing diminished early adaptive and later salvage responses under sulfur starvation. While snrk3.15 mutants exhibit no obvious phenotype under sufficient sulfur, the work provides a novel proteomic dataset comparing wild‑type and mutant seedlings under sulfur limitation.

sulfate deprivation CIPK14/SNRK3.15 Arabidopsis thaliana kinase signaling proteomics

Arabidopsis root lipid droplets are hubs for membrane homeostasis under heat stress, and triterpenoid synthesis and storage.

Authors: Scholz, P., Dabisch, J., Clews, A. C., Niemeyer, P. W., Vilchez, A. C., Lim, M. S. S., Sun, S., Hembach, L., Dreier, F., Blersch, K., Preuss, L., Bonin, M., Lesch, E., Iwai, Y., Shimada, T., Eirich, J., Finkemeier, I., Gutbrod, K., Doermann, P., Wang, Y., Mullen, R. T., Ischebeck, T.

Date: 2025-03-26 · Version: 1
DOI: 10.1101/2025.03.24.644787

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how heat stress alters lipid droplet (LD) number and composition in Arabidopsis thaliana roots, revealing degradation of membrane lipids and accumulation of TAGs and LDs. Proteomic and lipidomic analyses of LDs from a specific Arabidopsis mutant identified novel LD-associated proteins, including triterpene biosynthetic enzymes, whose substrates and products also accumulate in LDs, indicating LDs function as both sinks and sources during stress‑induced membrane remodeling and specialized metabolism.

lipid droplets heat stress Arabidopsis thaliana roots triterpene biosynthesis lipidomics

MYB59 is linked to natural variation of water use associated with warmer temperatures in Arabidopsis thaliana

Authors: Ferguson, J. N., Brendel, O., Bechtold, U.

Date: 2025-02-28 · Version: 1
DOI: 10.1101/2025.02.27.640580

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study surveyed vegetative water use and life‑history traits across Arabidopsis thaliana ecotypes in both controlled and outdoor environments to assess how climatic history shapes water‑use strategies. Trait‑climate correlations and genome‑wide association analyses uncovered that ecotypes from warmer regions exhibit higher water use, and identified MYB59 as a key gene whose temperature‑linked alleles affect water consumption, a finding validated using myb59 mutants. These results indicate that temperature‑driven adaptive differentiation partly explains intraspecific water‑use variation.

water-use variation Arabidopsis thaliana climate adaptation GWAS MYB59

The Proteomics Landscape of Pattern Triggered Immunity in the Arabidopsis Leaf Apoplast

Authors: Chen, H.-C., Newton, C. J., Zheng, Y., Kong, F., Yao, Y., Yang, L., Kvitko, B. H.

Date: 2025-02-08 · Version: 1
DOI: 10.1101/2025.02.06.636724

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study profiled the Arabidopsis apoplastic proteome during pattern‑triggered immunity induced by the flg22 peptide, using apoplastic washing fluid with minimal cytoplasmic contamination followed by LC‑MS/MS. Results showed consistent PTI‑specific enrichment and depletion of peptides, a bias toward ectodomain peptides of receptor‑like kinases, and increased abundance of the exosome marker tetraspanin 8, indicating heightened exosome levels during PTI.

apoplast pattern‑triggered immunity flg22 proteomics exosomes
Previous Page 2 of 2