Ethylene and ROS Signaling Are Key Regulators of Lateral Root Development under Salt Stress in Tomato
Authors: Rahmati Ishka, M., Zhao, J., Sussman, H., Mohanty, D., Craft, E., Yu, L., Pineros, M., Tester, M., Kawa, D., Mittler, R., Nelson, A., Fei, Z., Julkowska, M. M.
The study examined salt-induced alterations in root system architecture across a diverse panel of wild and cultivated tomato accessions, identifying tolerant varieties with distinct lateral root strategies. By combining Bulk Segregant Analysis of an F2 population with GWAS, the authors pinpointed 22 candidate genes, further narrowing to two key regulators through RNA‑Seq and functional assays involving ethylene and ROS profiling. These findings reveal genetic targets for improving salt resilience in tomato root development.
The study demonstrates that the microtubule‑associated protein WDL4 is essential for PhyB‑dependent thermomorphogenic and photomorphogenic responses in Arabidopsis, as wdl4-3 mutants mimic phyB loss‑of‑function phenotypes under varying temperatures and light conditions. Genetic analyses reveal that PIF4 activity is required for wdl4-3 hypocotyl hyper‑elongation, and while exogenous auxin can rescue pif4‑related defects, it does not restore the wdl4-3 specific elongation, indicating additional regulatory layers.
The study examined how genetic variation among 181 wheat (Triticum aestivum) lines influences root endophytic fungal communities using ITS2 metabarcoding. Heritability estimates and GWAS identified 11 QTLs linked to fungal clade composition, highlighting genetic control of mycobiota, especially for biotrophic AMF. These findings suggest breeding can be used to modulate beneficial root-fungal associations.
The study surveyed vegetative water use and life‑history traits across Arabidopsis thaliana ecotypes in both controlled and outdoor environments to assess how climatic history shapes water‑use strategies. Trait‑climate correlations and genome‑wide association analyses uncovered that ecotypes from warmer regions exhibit higher water use, and identified MYB59 as a key gene whose temperature‑linked alleles affect water consumption, a finding validated using myb59 mutants. These results indicate that temperature‑driven adaptive differentiation partly explains intraspecific water‑use variation.
Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits
Authors: Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Kosh Komba, E., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Vigouroux, Y., Grondin, A., Laplaze, L.
The study performed ionomic profiling and genome-wide association studies on a diverse panel of pearl millet infield across two seasons to uncover genetic factors controlling nutrient acquisition. Soil analyses revealed stable depth-dependent patterns for phosphorus and zinc, while leaf ion concentrations showed high heritability and associations with root and agronomic traits. Integrating GWAS with gene expression data identified candidate ion transport/homeostasis genes for breeding nutrient-efficient, climate-resilient millet.