Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 17 Papers

Wheat diversity reveals new genomic loci and candidate genes for vegetation indices using genome-wide association analysis

Authors: Rustamova, S., Jahangirov, A., Leon, J., Naz, A. A., Huseynova, I.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699455

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

A genome‑wide association study of 187 bread wheat genotypes identified 812 significant loci linked to 25 spectral vegetation indices under rainfed drought conditions, revealing a major QTL hotspot on chromosome 2A that accounts for up to 20% of variance in greenness and pigment traits. Candidate gene analysis at this hotspot uncovered stress‑responsive genes, demonstrating that vegetation indices are heritable digital phenotypes useful for selection and genetic analysis of drought resilience.

Triticum aestivum drought stress spectral vegetation indices GWAS QTL hotspot

Physics-Informed Neural Network Methods for Predicting Plant Height Development

Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699475

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.

Physics-Informed Neural Network logistic ODE Long Short-Term Memory plant height prediction wheat

QTL for Heat-Induced Stomatal Anatomy Underpin Gas Exchange Variation in Field-Grown Wheat

Authors: Chaplin, E. D., Tanaka, E., Merchant, A., Sznajder, B., Trethowan, R., Salter, W. T.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694723

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study evaluated how stomatal anatomy and physiological efficiency influence wheat heat tolerance across multi‑environment field trials with 200 genotypes, using early versus delayed sowing to impose temperature stress. Findings revealed a decoupling between anatomical capacity (gsmax) and actual conductance (gs, gse) under heat, plastic shifts toward smaller, denser stomata, and identified 125 QTL linked to stomatal traits, suggesting targets for breeding climate‑resilient wheat.

stomatal conductance heat stress wheat (Triticum aestivum) QTL mapping stomatal anatomy

Targeting granule initiation and amyloplast structure to create giant starch granules in wheat

Authors: McNelly, R., Esch, L., Ngai, Q. Y., Pohan, K., Stringer, R., Fahy, B., Warren, F., Seung, D.

Date: 2025-12-15 · Version: 1
DOI: 10.64898/2025.12.12.693964

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.

starch granule size PARC6 BGC1 wheat giant starch granules

Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions

Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.

Date: 2025-12-04 · Version: 1
DOI: 10.64898/2025.12.02.691979

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.

wheat Fusarium head blight deoxynivalenol untargeted metabolomics diterpene conjugates

Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil

Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.

Date: 2025-09-07 · Version: 1
DOI: 10.1101/2025.09.04.674292

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.

regenerative agriculture soil macroaggregation wheat 14C pulse labeling drought resilience

Soil phosphate availability modulates the arbuscular mycorrhizal fungal community and mycorrhizal nutrition in wheat

Authors: Trinquier, M., Lecloux, E., Bruno, P., Gasciolli, V., Jouany, C., Roux, C., Lefebvre, B., Ardanuy, A.

Date: 2025-08-09 · Version: 1
DOI: 10.1101/2025.08.08.669323

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.

arbuscular mycorrhizal fungi phosphorus availability nitrogen availability wheat metabarcoding

An aphid resistant wheat variety reduces the transmission of Barley Yellow Dwarf Virus (BYDV) by Rhopalosiphum padi (L.)

Authors: Qonaah, I. A., Simon, A. L., Warner, D., Bruce, T. J. A., Ray, R. V.

Date: 2025-08-02 · Version: 1
DOI: 10.1101/2025.07.30.667415

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study compared aphid resistance and Barley Yellow Dwarf Virus (BYDV) transmission among three wheat varieties (G1, RGT Wolverine, RGT Illustrious). G1 emits the repellent 2‑tridecanone, restricts aphid phloem access, and shows reduced BYDV transmission, whereas RGT Wolverine limits systemic viral infection despite high transmission efficiency. The authors suggest breeding the two resistance mechanisms together for improved protection.

aphid resistance Barley Yellow Dwarf Virus wheat 2‑tridecanone virus transmission

Homoeolog expression in polyploid wheat mutants shows limited transcriptional compensation

Authors: Dorussen, D., Knight, E., Simmonds, J., Borrill, P.

Date: 2025-07-02 · Version: 1
DOI: 10.1101/2025.07.01.662569

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.

transcriptional compensation homoeologs premature termination codon wheat mutagenised lines

Mycotoxin-driven proteome remodeling reveals limited activation of Triticum aestivum responses to emerging chemotypes integrated with fungal modulation of ergosterols

Authors: Ramezanpour, S., Alijanimamaghani, N., McAlister, J. A., Hooker, D., Geddes-McAlister, J.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.30.662327

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study used comparative proteomics to examine how the emerging 15ADON/3ANX chemotype of Fusarium graminearum affects protein expression in both wheat and the fungus. It identified a core wheat proteome altered by infection, chemotype‑specific wheat proteins, and fungal proteins linked to virulence and ergosterol biosynthesis, revealing distinct molecular responses influencing disease severity.

Fusarium head blight 15ADON/3ANX chemotype proteomics Triticum aestivum Fusarium graminearum
Page 1 of 2 Next