A novel pathosystem between Aeschynomene evenia and Aphanomyces euteiches reveals new immune components in quantitative legume root-rot resistance.
Authors: Baker, M., Martinez, Y., Keller, J., Sarrette, B., Pervent, M., Libourel, C., Le Ru, A., Bonhomme, M., Gough, C., Castel, B., ARRIGHI, J.-F., Jacquet, C.
The study establishes Aeschynomene evenia as a new model for dissecting legume immunity against the soilborne pathogen Aphanomyces euteiches and its relationship with Nod factor-independent symbiosis. Quantitative resistance was assessed through inoculation assays, phenotypic and cytological analyses, and RNA‑seq identified thousands of differentially expressed genes, highlighting immune signaling and specialized metabolism, with mutant analysis confirming dual‑function kinases that modulate resistance. Comparative transcriptomics with Medicago truncatula revealed conserved and unique immune responses, positioning the A. evenia–A. euteiches system as a valuable platform for exploring quantitative resistance and symbiosis integration.
The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.
The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.
The study examined how dual‑purpose hemp (Cannabis sativa) adjusts to different phosphate levels, showing that flower biomass is maintained unless phosphate is completely removed. Integrated physiological measurements and transcriptomic profiling revealed that phosphate is reallocated to flowers via glycolytic bypasses and organic phosphate release, while key regulatory genes followed expected patterns but did not suppress uptake at high phosphate, leading to nitrate depletion that limits growth.
The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.
In vivo binding by Arabidopsis SPLICING FACTOR 1 shifts 3' splice site choice, regulating circadian rhythms and immunity in plants
Authors: Agrofoglio, Y. C., Iglesias, M. J., de Leone, M. J., Hernando, C. E., Lewinski, M., Torres, S. B., Contino, G., Yanovsky, M. J., Staiger, D., Mateos, J. L.
The study characterizes the plant spliceosomal protein AtSF1 in Arabidopsis thaliana, using iCLIP and RNA‑seq to map its in vivo branch point binding sites and demonstrate that loss of AtSF1 causes widespread 3' splice‑site mis‑selection. Structural comparison reveals a plant‑specific domain architecture, and the identified AtSF1 targets are enriched for circadian and defense genes, linking splicing regulation to timing and immunity.
The study evaluated how stomatal anatomy and physiological efficiency influence wheat heat tolerance across multi‑environment field trials with 200 genotypes, using early versus delayed sowing to impose temperature stress. Findings revealed a decoupling between anatomical capacity (gsmax) and actual conductance (gs, gse) under heat, plastic shifts toward smaller, denser stomata, and identified 125 QTL linked to stomatal traits, suggesting targets for breeding climate‑resilient wheat.
The study identified a critical two‑week window of elevated maternal temperature during weeks 4–5 after flowering that delays dormancy release in weedy rice seeds. Controlled‑environment and field transplant experiments showed that this late‑reproductive‑stage heat exposure postpones germination after after‑ripening, providing insight for predicting seed behavior and improving weed management strategies.
Using ten Phaeodactylum tricornutum mutant strains with graded constitutive Lhcx1 expression, the study links NPQ induction under high light to physiological outcomes (oxidized QA, increased cyclic electron flow) and extensive transcriptomic reprogramming, affecting nearly half the genome. The approach demonstrates that higher NPQ mitigates PSII damage, boosts ATP production for repair, and drives distinct gene regulatory networks, providing a model framework for dissecting photosynthetic and gene expression integration.
The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.