Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 96 Papers

Molecular basis of delayed leaf senescence induced by short-term treatment with low phosphate in rice

Authors: Martin-Cardoso, H., Bundo, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-24 · Version: 1
DOI: 10.64898/2026.01.23.701354

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.

phosphate deficiency leaf senescence Oryza sativa CRISPR/Cas9 transcriptomic analysis

A drought stress-induced MYB transcription factor regulates pavement cell shape in leaves of European aspen (Populus tremula)

Authors: Liu, S., Doyle, S. M., Robinson, K. M., Rahneshan, Z., Street, N. R., Robert, S.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699252

Category: Plant Biology

Model Organism: Populus tremula

AI Summary

The study examined leaf pavement cell shape complexity across a natural European aspen (Populus tremula) population, using GWAS to pinpoint the transcription factor MYB305a as a regulator of cell geometry. Functional validation showed that MYB305a expression is induced by drought and contributes to shape simplification, with cell complexity negatively correlated with water-use efficiency and climatic variables of the genotypes' origin.

leaf pavement cells Populus tremula MYB305a GWAS drought stress

Wheat diversity reveals new genomic loci and candidate genes for vegetation indices using genome-wide association analysis

Authors: Rustamova, S., Jahangirov, A., Leon, J., Naz, A. A., Huseynova, I.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699455

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

A genome‑wide association study of 187 bread wheat genotypes identified 812 significant loci linked to 25 spectral vegetation indices under rainfed drought conditions, revealing a major QTL hotspot on chromosome 2A that accounts for up to 20% of variance in greenness and pigment traits. Candidate gene analysis at this hotspot uncovered stress‑responsive genes, demonstrating that vegetation indices are heritable digital phenotypes useful for selection and genetic analysis of drought resilience.

Triticum aestivum drought stress spectral vegetation indices GWAS QTL hotspot

Overexpression of PtaHDG11 enhances drought tolerance and suppresses trichome formation in Populus tremula x Populus alba

Authors: Fendel, A., Fladung, M., Bruegmann, T.

Date: 2026-01-13 · Version: 1
DOI: 10.64898/2026.01.12.699028

Category: Plant Biology

Model Organism: Populus tremula × Populus alba

AI Summary

The study identified the poplar homolog of Arabidopsis HDG11 and generated transgenic poplar hybrids overexpressing PtaHDG11. Constitutive expression conferred markedly improved drought tolerance, as evidenced by higher leaf water content, reduced oxidative damage, up‑regulation of antioxidant genes, and greater post‑stress biomass, while also causing a glabrous phenotype. These results highlight PtaHDG11 as a promising target for breeding drought‑resilient trees.

HDG11 drought tolerance Populus hybrid antioxidant genes transgenic overexpression

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

Features affecting Cas9-Induced Editing Efficiency and Patterns in Tomato: Evidence from a Large CRISPR Dataset

Authors: Cucuy, A., Ben-Tov, D., Melamed-Bessudo, C., Honig, A., Cohen, B. A., Levy, A. A.

Date: 2026-01-07 · Version: 1
DOI: 10.64898/2026.01.06.696182

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.

CRISPR/Cas9 ATAC-seq chromatin accessibility microhomology‑mediated end joining tomato

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization

The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.

Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.28.696759

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.

autophagy auxin signaling carbon/nitrogen ratio Physcomitrium patens caulonemata development

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis

The CCCH Zinc Finger Gene PgCCCH50 from Pearl Millet Confers Drought and Salt Tolerance through an ABA-Dependent PgAREB1-PgCCCH50 Module

Authors: xie, z., zhu, J., Yu, G., Ma, X., Zhou, Y., Yan, H., Huang, L.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.23.696222

Category: Plant Biology

Model Organism: Pennisetum glaucum

AI Summary

The authors performed a genome-wide analysis of 53 CCCH zinc‑finger genes in pearl millet, identified seven stress‑responsive members and demonstrated that overexpressing PgC3H50 in Arabidopsis enhances drought and salt tolerance. They showed that the ABA‑responsive transcription factor PgAREB1 directly binds the PgC3H50 promoter, activating its expression, as confirmed by yeast one‑hybrid, dual‑luciferase and EMSA assays, defining a new PgAREB1‑PgC3H50 regulatory module.

CCCH zinc finger proteins drought tolerance salinity stress ABA signaling Pearl millet
Page 1 of 10 Next