Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 31 Papers

DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana

Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.

Date: 2025-08-26 · Version: 1
DOI: 10.1101/2025.08.21.671646

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.

heterosis DNA methylation DDM1 Arabidopsis thaliana transcriptomics

Identification of a novel link connecting indole-3-acetamide with abscisic acid biosynthesis and signaling

Authors: Moya-Cuevas, J., Ortiz-Garcia, P., Gonzalez Ortega-Villizan, A., Viguera-Leza, I., Perez-Gonzalez, A., Paz-Ares, J., Alonso-Blanco, C., Vicente-Carbajosa, J., Pollmann, S.

Date: 2025-08-20 · Version: 1
DOI: 10.1101/2025.08.15.670611

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

A genome-wide association study of 166 Iberian Arabidopsis accessions identified loci, including ABA3 and GA2ox2, that modulate the inhibitory effect of the auxin precursor indole-3-acetamide (IAM) on primary root elongation. Integrating sequence analysis, transcriptomics, 3D protein modeling, and mutant physiology revealed that IAM promotes ABA biosynthesis and signaling, uncovering a novel node of hormone crosstalk.

indole-3-acetamide (IAM) abscisic acid (ABA) signaling Arabidopsis thaliana GWAS hormone crosstalk

The Arabidopsis GyraseB3 contributes to transposon silencing by promoting histone deacetylation

Authors: Gy, I., Beaubiat, S., Bouche, N.

Date: 2025-08-13 · Version: 1
DOI: 10.1101/2025.08.11.669681

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies GyrB3 as a novel nuclear factor that interacts with histone deacetylases to regulate transposable element silencing in plants, acting as a suppressor of IBM1 deficiency–induced epigenetic defects. Loss of GyrB3 reduces DNA methylation and increases H3 acetylation at TEs, demonstrating the importance of histone deacetylation for genome stability.

DNA methylation histone demethylase IBM1 GyrB3 transposable element silencing histone deacetylase HDA6

NUDIX Hydrolases Target Specific Inositol Pyrophosphates and Regulate Phosphate Homeostasis and Bacterial Pathogen Susceptibility in Arabidopsis

Authors: Schneider, R., Lami, K., Prucker, I., Stolze, S. C., Strauss, A., Schmidt, J. M., Bartsch, S. M., Langenbach, K., Lange, E., Ritter, K., Furkert, D., Faiss, N., Kumar, S., Hasan, M. S., Makris, A., Krusenbaum, L., Wege, S., Belay, Y. Z., Kriescher, S., The, J., Harings, M., Grundler, F., Ried-Lasi, M. K., Schoof, H., Gaugler, P., Kamleitner, M., Fiedler, D., Nakagami, H., Giehl, R. F., Lahaye, T., Bhattacharjee, S., Jessen, H. J., Gaugler, V., Schaaf, G.

Date: 2025-08-12 · Version: 2
DOI: 10.1101/2024.10.18.619122

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified two subclades of Arabidopsis NUDIX hydrolases that selectively hydrolyze distinct inositol pyrophosphate isomers, with subclade I targeting 4-InsP7 and subclade II targeting 3-InsP7 in a Mg2+-dependent manner. Loss-of-function mutants of subclade II NUDTs displayed disrupted phosphate and iron homeostasis, elevated 1/3-InsP7 levels, and increased resistance to Pseudomonas syringae, revealing roles in nutrient signaling and plant immunity, while cross-kingdom analyses showed conserved PP-InsP‑metabolizing activities.

Inositol pyrophosphates NUDIX hydrolases phosphate homeostasis iron homeostasis plant immunity

Cell-type specific gating of gene regulatory modules as a hallmark of early immune responses in Arabidopsis leaves

Authors: Wang, S., Bezrukov, I., Wu, P.-J., Gauss, H., Timmermans, M., Weigel, D.

Date: 2025-08-01 · Version: 1
DOI: 10.1101/2025.08.01.668105

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used single‑cell transcriptomics to compare Arabidopsis thaliana leaf cell responses during pattern‑triggered and effector‑triggered immunity, revealing that core defense modules are broadly shared but differ in timing, intensity, and cell‑type specific receptor dynamics. Distinct mesophyll subpopulations showed divergent resilience patterns, and gene regulatory network analysis identified WRKY‑regulated and salicylic‑acid biosynthesis modules, with the cue1-6 mutant confirming robustness of core immune responses while exposing cryptic sucrose‑responsive pathways.

single-cell RNA sequencing Arabidopsis thaliana plant immunity PTI and ETI WRKY transcription factors

A sublethal drought and rewatering time course reveals intricate patterning of responses in the annual Arabidopsis thaliana

Authors: Fitzek-Campbell, E., Psaroudakis, D., Weisshaar, B., Junker, A., Braeutigam, A.

Date: 2025-07-27 · Version: 1
DOI: 10.1101/2025.07.25.666782

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.

drought stress Arabidopsis thaliana transcriptomics high‑throughput phenotyping biomarker transcripts

A conserved small RNA-generating gene cluster undergoes sequence diversification and contributes to plant immunity

Authors: Feng, L., Hou, Y., Toghani, A., Wang, Z., Tang, B., Atkinson, N., Li, H., Qiao, Y., Wang, Y., Hua, J., Zhai, J., Ma, W.

Date: 2025-07-21 · Version: 1
DOI: 10.1101/2025.07.20.665670

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that a conserved clade of pentatricopeptide repeat (PPR) genes in Arabidopsis thaliana generates secondary siRNAs that contribute to plant immunity, with these PPR loci undergoing extensive duplication and diversification to create a varied siRNA pool for pathogen defense. This PPR‑siRNA system is proposed as a novel family of defense genes with potential for engineering broad‑spectrum disease resistance.

secondary siRNA pentatricopete repeat proteins plant immunity gene duplication co‑evolutionary arms race

Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming

Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.

Date: 2025-07-09 · Version: 1
DOI: 10.1101/2025.07.08.663752

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.

Enterobacter sp. SA187 elevated CO2 Arabidopsis thaliana phytohormone signaling transcriptomics

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

Molecular Insights into the Production of Extracellular Vesicles by Plants

Authors: Koch, B. L., Gardner, D., Smith, H., Bracewell, R., Awdey, L., Foster, J., Borniego, M. L., Munch, D. H., Nielsen, M. E., Pasupuleti, R., Trinidad, J., Rutter, B., Thordal-Christensen, H., Innes, R. W.

Date: 2025-06-17 · Version: 1
DOI: 10.1101/2025.06.16.659989

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used proximity labeling, co‑immunoprecipitation, and fluorescence microscopy to dissect the protein components and pathways governing distinct extracellular vesicle (EV) subpopulations in Arabidopsis, identifying roles for EXO70 exocyst subunits, RIN4, and VAP27. Mutant analyses revealed that disruptions in exo70 family genes, rin4, rabA2a, scd1, and vap27 reduce EV secretion and increase susceptibility to the fungal pathogen Colletotrichum higginsianum, highlighting EV secretion as a key facet of plant immunity.

extracellular vesicles Arabidopsis thaliana EXO70 exocyst complex proximity labeling plant immunity
Previous Page 2 of 4 Next