Comparative multi-omics profiling of Gossypium hirsutum and Gossypium barbadense fibers at high temporal resolution reveals key differences in polysaccharide composition and associated glycosyltransferases
Authors: Swaminathan, S., Lee, Y., Grover, C. E., DeTemple, M. F., Mugisha, A. S., Sichterman, L. E., Yang, P., Xie, J., Wendel, J. F., Szymanski, D. B., Zabotina, O. A.
The study performed daily large-scale glycome, transcriptome, and proteome profiling of developing fibers from the two cultivated cotton species, Gossypium barbadense and G. hirsutum, across primary and secondary cell wall stages. It identified delayed cellulose accumulation and distinct compositions of xyloglucans, homogalacturonans, rhamnogalacturonan‑I, and heteroxylans in G. barbadense, along with higher expression of specific glycosyltransferases and expansins, suggesting these molecular differences underlie the superior fiber length and strength of G. barbadense.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
The study applied Spatial Analysis of Field Trials with Splines (SpATS) and Neighbor Genome-Wide Association Study (Neighbor GWAS) to barley field data, revealing that neighboring genotypes contribute to spatial variation in disease damage. Neighbor GWAS identified variants on chromosome 7H that modestly affect net form net blotch and scald resistance, suggesting that genotype mixtures could mitigate pest damage.
The study evaluated natural genetic variation in non-photochemical quenching and photoprotection across 861 sorghum accessions grown in the field over two years, revealing moderate to high broad-sense heritability for chlorophyll fluorescence traits. By integrating genome-wide association studies (GWAS) with transcriptome-wide association studies (TWAS) and covariance analyses, the authors identified 110 high-confidence candidate genes underlying photoprotection, highlighting a complex, polygenic architecture for these traits.
The study evaluated how acute heat stress affects early-stage rice seedlings, identifying a critical temperature threshold that impairs growth. Transcriptomic profiling of shoots and roots revealed ethylene‑responsive factors (ERFs) as central regulators, with ethylene and jasmonic acid acting upstream, and pre‑treatment with these hormones mitigated heat damage. These findings highlight ERF‑hormone interaction networks as targets for improving rice heat resilience.
Using the Euphorbia peplus genome, the authors performed organ‑specific transcriptomic profiling of the cyathium and combined it with gene phylogenies and dN/dS analysis to investigate floral‑development gene families. They found distinct SEP1 paralog expression, lack of E‑class gene duplications typical of other pseudanthia, and divergent expression patterns for CRC, UFO, LFY, AP3, and PI, suggesting unique developmental pathways in Euphorbia.
Ethylene and ROS Signaling Are Key Regulators of Lateral Root Development under Salt Stress in Tomato
Authors: Rahmati Ishka, M., Zhao, J., Sussman, H., Mohanty, D., Craft, E., Yu, L., Pineros, M., Tester, M., Kawa, D., Mittler, R., Nelson, A., Fei, Z., Julkowska, M. M.
The study examined salt-induced alterations in root system architecture across a diverse panel of wild and cultivated tomato accessions, identifying tolerant varieties with distinct lateral root strategies. By combining Bulk Segregant Analysis of an F2 population with GWAS, the authors pinpointed 22 candidate genes, further narrowing to two key regulators through RNA‑Seq and functional assays involving ethylene and ROS profiling. These findings reveal genetic targets for improving salt resilience in tomato root development.
The study shows that heatwaves impair the ability of apple (Malus domestica) to mount ASM‑induced immunity against fire blight and apple scab, leading to a loss of protective gene expression. Transcriptomic analysis revealed a broad suppression of ASM‑regulated defense and other biological processes under high temperature, identifying thermo‑sensitive resistance and susceptibility marker genes. The findings highlight that elevated temperature both weakens plant defenses and creates a more favorable environment for pathogens.
The study identified a major QTL (qDTH3) on chromosome 3 responsible for a 7‑10‑day earlier heading phenotype in the rice line SM93, using QTL‑seq, KASP genotyping, association mapping, and transcriptomic analysis to fine‑map the locus to a 2.53 Mb region and pinpoint candidate genes. SNP markers linked to these genes were proposed as tools for breeding early‑maturing, climate‑resilient rice varieties.
The study compares transcriptional, proteomic, and metabolomic responses of wild‑type Arabidopsis and a cyp71A27 mutant to a plant‑growth‑promoting Pseudomonas fluorescens strain and a pathogenic Burkholderia glumeae strain, revealing distinct reprogramming and an unexpected signaling role for the non‑canonical P450 CYP71A27. Mutant analysis showed that loss of CYP71A27 alters gene and protein regulation, especially during interaction with the PGP bacterium, while having limited impact on root metabolites and exudates.