Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 87 Papers

Initiation of asexual reproduction by the AP2/ERF gene GEMMIFER in Marchantia polymorpha

Authors: Takahashi, G., Yamaya, S., Romani, F., Bonter, I., Ishizaki, K., Shimamura, M., Kiyosue, T., Haseloff, J., Hirakawa, Y.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699827

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identifies the AP2/ERF transcription factor GEMMIFER (MpGMFR) as essential for asexual reproduction in the liverwort Marchantia polymorpha, showing that loss of MpGMFR via genome editing or amiRNA abolishes gemma and gemma cup formation, while dexamethasone‑induced activation triggers their development. Transient strong activation of MpGMFR initiates gemma initial cells at the meristem, which mature into functional gemmae, indicating MpGMFR is both necessary and sufficient for meristem‑derived asexual propagule formation.

MpGMFR AP2/ERF gemmae Marchantia polymorpha asexual reproduction

A drought stress-induced MYB transcription factor regulates pavement cell shape in leaves of European aspen (Populus tremula)

Authors: Liu, S., Doyle, S. M., Robinson, K. M., Rahneshan, Z., Street, N. R., Robert, S.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699252

Category: Plant Biology

Model Organism: Populus tremula

AI Summary

The study examined leaf pavement cell shape complexity across a natural European aspen (Populus tremula) population, using GWAS to pinpoint the transcription factor MYB305a as a regulator of cell geometry. Functional validation showed that MYB305a expression is induced by drought and contributes to shape simplification, with cell complexity negatively correlated with water-use efficiency and climatic variables of the genotypes' origin.

leaf pavement cells Populus tremula MYB305a GWAS drought stress

Wheat diversity reveals new genomic loci and candidate genes for vegetation indices using genome-wide association analysis

Authors: Rustamova, S., Jahangirov, A., Leon, J., Naz, A. A., Huseynova, I.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699455

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

A genome‑wide association study of 187 bread wheat genotypes identified 812 significant loci linked to 25 spectral vegetation indices under rainfed drought conditions, revealing a major QTL hotspot on chromosome 2A that accounts for up to 20% of variance in greenness and pigment traits. Candidate gene analysis at this hotspot uncovered stress‑responsive genes, demonstrating that vegetation indices are heritable digital phenotypes useful for selection and genetic analysis of drought resilience.

Triticum aestivum drought stress spectral vegetation indices GWAS QTL hotspot

Overexpression of PtaHDG11 enhances drought tolerance and suppresses trichome formation in Populus tremula x Populus alba

Authors: Fendel, A., Fladung, M., Bruegmann, T.

Date: 2026-01-13 · Version: 1
DOI: 10.64898/2026.01.12.699028

Category: Plant Biology

Model Organism: Populus tremula × Populus alba

AI Summary

The study identified the poplar homolog of Arabidopsis HDG11 and generated transgenic poplar hybrids overexpressing PtaHDG11. Constitutive expression conferred markedly improved drought tolerance, as evidenced by higher leaf water content, reduced oxidative damage, up‑regulation of antioxidant genes, and greater post‑stress biomass, while also causing a glabrous phenotype. These results highlight PtaHDG11 as a promising target for breeding drought‑resilient trees.

HDG11 drought tolerance Populus hybrid antioxidant genes transgenic overexpression

Physiological Characterization under the Influence of Drought Stress and Salicylic Acid in Valeriana wallichii DC

Authors: Ansari, S., Patni, B., Jangpangi, D., Joshi, H. C., Bhatt, M. K., Purohit, V.

Date: 2026-01-09 · Version: 1
DOI: 10.64898/2026.01.09.698547

Category: Plant Biology

Model Organism: Valeriana wallichii

AI Summary

The study investigated the ability of foliar-applied salicylic acid (SA) to alleviate drought stress in the high‑altitude medicinal plant Valeriana wallichii by measuring physiological and biochemical responses during vegetative and flowering stages. SA at specific concentrations improved photosynthetic rates, water‑use efficiency, chlorophyll content, membrane stability, and root biomass under both severe (25% field capacity) and moderate (50% field capacity) drought conditions. These results suggest that SA treatment enhances drought tolerance and productivity in this species.

drought stress salicylic acid Valeriana wallichii photosynthetic efficiency water use efficiency

Do stomatal movements have a limited dynamic range?

Authors: Muraya, F., Siqueira, J. A., Very, A.-A., Roelfsema, R.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.22.695892

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined the roles of AtKUP2, AtKUP6, AtKUP8, and GORK potassium transport proteins in guard cell function by performing gas-exchange measurements on mature Arabidopsis leaves. Loss of KUP2/6/8 reduced stomatal conductance, whereas a GORK loss‑of‑function mutant showed increased conductance, yet the magnitude of light‑ and ABA‑induced transpiration changes remained similar across genotypes, suggesting a limited dynamic range for rapid stomatal movements that relies on small ionic osmolytes.

stomatal conductance potassium transporters GORK channel AtKUP2/6/8 Arabidopsis

The CCCH Zinc Finger Gene PgCCCH50 from Pearl Millet Confers Drought and Salt Tolerance through an ABA-Dependent PgAREB1-PgCCCH50 Module

Authors: xie, z., zhu, J., Yu, G., Ma, X., Zhou, Y., Yan, H., Huang, L.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.23.696222

Category: Plant Biology

Model Organism: Pennisetum glaucum

AI Summary

The authors performed a genome-wide analysis of 53 CCCH zinc‑finger genes in pearl millet, identified seven stress‑responsive members and demonstrated that overexpressing PgC3H50 in Arabidopsis enhances drought and salt tolerance. They showed that the ABA‑responsive transcription factor PgAREB1 directly binds the PgC3H50 promoter, activating its expression, as confirmed by yeast one‑hybrid, dual‑luciferase and EMSA assays, defining a new PgAREB1‑PgC3H50 regulatory module.

CCCH zinc finger proteins drought tolerance salinity stress ABA signaling Pearl millet

Dynamic ASK1 proximity networks uncover SCF-dependent and noncanonical roles in ABA and drought adaptation

Authors: Rodriguez-Zaccaro, F. D., Moe-Lange, J., Malik, S., Montes-Serey, C., Hamada, N., Groover, A., Walley, J., Shabek, N.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.22.696057

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study maps the in vivo proximity interactome of Arabidopsis SKP1-LIKE 1 (ASK1) under acute abscisic acid (ABA) signaling and prolonged drought using TurboID-based proximity labeling and quantitative proteomics, revealing condition-specific networks that include both canonical SCF modules and diverse noncanonical partners. Overexpression of ASK1 shifts proteome composition toward drought‑protective and ABA‑responsive proteins while repressing immune and ROS‑scavenging pathways, highlighting ASK1 as a hub that integrates SCF‑dependent and independent pathways to reprogram transcription, translation, and proteostasis during stress adaptation.

ASK1 SCF ubiquitin ligases abscisic acid signaling drought stress TurboID proximity labeling

Assessing Drought Resilience and Identification of High Yielding Upland Rice Varieties through Phenology, Growth and Yield Traits

Authors: Hussain, T., Anothai, J., Nualsri, C., Ali, A., Ali, M. F., Khomphet, T.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.20.695743

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

Sixteen upland rice varieties were evaluated under three irrigation regimes (100%, 70%, and 50% field capacity) with additional six‑day water withholding to simulate moderate and severe drought. Yield losses ranged from 35% to 78% depending on stress level, and varieties Dawk Kha, Khao/Sai, and Dawk Pa‑yawm showed the greatest stability, suggesting they are promising for breeding drought‑resilient upland rice.

upland rice drought stress field capacity irrigation yield loss varietal stability

A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha

Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.

Date: 2025-12-13 · Version: 1
DOI: 10.64898/2025.12.11.693594

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.

SABATH methyltransferases Marchantia polymorpha gibberellin metabolism far‑red light response developmental regulation
Page 1 of 9 Next