The study investigates the role of two ATP-binding cassette transporters, MpABCG1 and MpABCG36, in the sequestration of specialized metabolites within oil bodies of the liverwort Marchantia polymorpha. Loss‑of‑function mutants displayed reduced accumulation of sesquiterpenes and, specifically for MpABCG1, decreased levels of bis‑bibenzyls, while oil‑body formation remained largely unaffected, indicating these transporters are essential for metabolite accumulation rather than organelle biogenesis.
The study applied CRISPR/Cas9 gene editing to Physalis peruviana to modify plant‑architecture genes and create a compact growth ideotype. This compact phenotype is intended to increase per‑plot yield and support future breeding efforts for this nutritionally valuable minor crop.
The study demonstrates that limonene, a natural essential‑oil component, strongly inhibits Fusarium oxysporum, the causal agent of potato dry rot, by impairing colony growth, hyphal morphology, spore viability, membrane integrity, and transcription/translation processes, as well as disrupting ion homeostasis. Combined treatments reveal additive effects with mancozeb and synergistic effects with hymexazol, highlighting limonene's potential as an eco‑friendly bio‑fungicide for potato disease management.
Six new Viola species and two reinstated species from China were identified using field surveys, detailed morphological comparison, and phylogenetic analysis of ITS and GPI gene sequences, placing them in section Plagiostigma subsect. Diffusae. The GPI data offered higher resolution, indicating complex relationships possibly due to ancient hybridization or incomplete lineage sorting, thereby clarifying species boundaries and evolutionary patterns in Chinese Viola.
The study characterizes the single-copy S-nitrosoglutathione reductase 1 (MpGSNOR1) in the liverwort Marchantia polymorpha, showing that loss-of-function mutants generated via CRISPR/Cas9 exhibit marked morphological defects and compromised SNO homeostasis and immune responses. These findings indicate that GSNOR-mediated regulation of S‑nitrosylation is an ancient mechanism linking development and immunity in early land plants.
The study used CRISPR/Cas9 to edit the downstream region of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, identifying a 2.3‑kb segment containing the Block E enhancer as crucial for normal FT expression and flowering. Fine‑scale deletions pinpointed a 63‑bp core module with CCAAT‑ and G‑boxes, and revealed a cryptic CCAAT‑box that becomes active when repositioned, highlighting the importance of local chromatin context and motif arrangement for enhancer function.
The study provides a comprehensive genome-wide catalog and single‑cell expression atlas of the carbonic anhydrase (CA) gene family in maize, identifying 18 CA genes across α, β, and γ subfamilies and detailing their structural and regulatory features. Phylogenetic, synteny, promoter motif, bulk tissue RNA‑seq, and single‑cell RNA‑seq analyses reveal distinct tissue and cell‑type specific expression patterns, highlighting β‑CAs as key players in C4 photosynthesis and γ‑CAs in ion/pH buffering, and propose cell‑type‑specific CA genes as targets for improving stress resilience.
The study presents a plant‑focused phylogenetic analysis of class B flavin‑dependent monooxygenases, identifying eight distinct families and revealing lineage‑specific diversification, especially in the NADPH‑binding domain. Using known FMOs as baits, they assembled flavin‑related proteins from key Viridiplantae lineages, performed domain architecture and motif analyses, and reclassified several families, providing a framework for future functional studies.
The study optimized three wheat transformation methods—immature embryo, callus, and in planta injection—by systematically adjusting Agrobacterium strain, bacterial density, acetosyringone concentration, and incubation conditions, achieving transformation efficiencies up to 66.84%. Using these protocols, CRISPR/Cas9 knockout of the negative regulator TaARE1-D produced mutants with increased grain number, spike length, grain size, and a stay‑green phenotype, demonstrating the platform’s potential to accelerate yield and stress‑tolerance improvements in wheat.
Evolutionary origin and functional mechanism of Lhcx in the diatom photoprotection
Authors: Kumazawa, M., Akimoto, S., Takabayashi, A., Imaizumi, K., Tsuji, S., Hasegawa, H., Sakurai, A., Imamura, S., Ishikawa, N., Inoue-Kashino, N., Kashino, Y., Ifuku, K.
Molecular phylogenetic analysis indicated that diatom Lhcx proteins share a common ancestor with green algal Lhcsrs, suggesting acquisition via horizontal gene transfer. Knockout of the Lhcx1 gene in the diatom Chaetoceros gracilis almost eliminated non‑photochemical quenching and revealed that Lhcx1 mediates quenching in detached antenna complexes, while also influencing PSII quantum yield and carbon fixation under high‑light conditions. These findings elucidate the evolutionary origin and mechanistic role of Lhcx‑mediated photoprotection in diatoms.