Root growth promotion by Penicillium melinii: mechanistic insights and agricultural applications
Authors: Gutierrez-Manso, L., Devesa-Aranguren, I., Conesa, C. M., Monteoliva-Garcia, G., Gonzalez-Sayer, S., Lozano-Enguita, A., Blasio, F., Ugena, L., Nolasco, J., Vazquez-Mora, A., Levy, C. C. B., Ariel Otero, E., Fernandez-Calvo, P., Moreno-Risueno, M. A., petrik, I., Pencik, A., Reguera, M., Gonzalez-Bodi, S., Huerta-Cepas, J., Sacristan, S., del Pozo, J. C., Cabrera, J.
The study characterizes the endophytic fungus Penicillium melinii, isolated from Arabidopsis thaliana roots, as a plant‑growth‑promoting agent that enhances root architecture and biomass across Arabidopsis, quinoa, and tomato. Integrated phenotypic, transcriptomic, and hormonal analyses reveal that the fungus stimulates auxin‑related pathways and modest stress responses, leading to increased tomato yield in field trials, underscoring its value as a model for root development and a sustainable biostimulant.
The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.
The study demonstrates that salinity stress induces a photomorphogenic‑like response in dark‑grown Arabidopsis thaliana seedlings, resulting in reduced apical hook curvature and impaired soil emergence. This phenotype is linked to disrupted asymmetric epidermal cell elongation, decreased auxin signaling and PIN3 abundance on the hook’s concave side, repression of BBX28 expression, and loss of a spatial COP1 gradient, highlighting spatial regulation as a key factor in stress‑affected seedling development.
Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions
Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.
The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.
SPOROCYTELESS/NOZZLE acts together with MADS-domain transcription factors to regulate an auxin-dependent network controlling the Megaspore Mother Cell development
Authors: Cavalleri, A., Astori, C., Manrique, S., Bruzzaniti, G., Smaczniak, C., Mizzotti, C., Ruiu, A., Spano, M., Movilli, A., Gregis, V., Xu, X., Kaufmann, K., Colombo, L.
The study elucidates the SPL/NZZ‑dependent regulatory pathway governing megaspore mother cell (MMC) differentiation, revealing that SPL/NZZ directly targets genes and interacts with ovule‑identity MADS‑domain transcription factor complexes. Integration of multi‑omics data with genetic complementation and mutant analyses uncovers an auxin‑dependent downstream network that drives MMC formation.
The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.
The study characterizes the liverwort-specific NPR protein (MpNPR) in Marchantia polymorpha, demonstrating that it controls oil body formation and confers resistance to gastropod herbivory through interaction with the transcription factor MpERF13. Loss- or gain-of-function of MpNPR disrupts MpERF13‑dependent gene expression and compromises defense against snail feeding, revealing a lineage‑specific immune pathway distinct from tracheophyte NPR functions.
The study demonstrates that red and blue light have opposing effects on thallus growth orientation in Marchantia polymorpha, with red light promoting epinasty and blue light promoting hyponasty. Loss-of-function mutants in the respective photoreceptors and BBX transcription factors reveal antagonistic interactions that balance thallus flatness under white light. Time‑resolved transcriptomics identified rapid light‑induced genes, including all six MpBBX members, whose mutant phenotypes support this antagonistic model.
The study demonstrates that very long chain sphingolipids in the outer membrane leaflet interdigitate with inner‑leaflet phosphatidylserine, forming a vertical bridge that organizes PS nanodomains and enables auxin‑induced activation of the Rho‑GTPase ROP6. Disruption of sphingolipid biosynthesis disperses these nanodomains, impairing ROP6 signaling, cytoskeletal dynamics, and directional growth, highlighting interleaflet coupling as a key mechanism linking membrane asymmetry to plant signal transduction.
Nanoclustering of a plant transcription factor enables strong yet specific DNA binding
Authors: Arfman, K., Janssen, B. P. J., Romein, R., van den Boom, S., van der Woude, M., Jansen, L., Rademaker, M., Hernandez-Garcia, J., Ramalho, J. J., Dipp-Alvarez, M., Borst, J. W., Weijers, D., van Mierlo, C. P. M., Sprakel, J.
The study reveals that the Auxin Response Factor MpARF2 in Marchantia polymorpha forms nanoscopic clusters within the plant nucleus, representing a distinct mode of DNA binding distinct from monomeric/oligomeric binding and liquid phase-separated condensates. These nanoclusters provide high‑affinity, switch‑like, sequence‑specific DNA interaction, suggesting a novel mechanism for transcriptional regulation by TF nanoclustering.