Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 66 Papers

Molecular basis of delayed leaf senescence induced by short-term treatment with low phosphate in rice

Authors: Martin-Cardoso, H., Bundo, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-24 · Version: 1
DOI: 10.64898/2026.01.23.701354

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.

phosphate deficiency leaf senescence Oryza sativa CRISPR/Cas9 transcriptomic analysis

Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes

Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701158

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.

tomato pathogen compatibility transcriptomics co‑expression network Arabidopsis interactome

WITHDRAWN: The NLR immune receptor Roq1 recognizes the Pseudomonas syringae HopAG1 effector via its Nudix domain

Authors: Gorecka, M., Jonak, M., Grech-Baran, M., Steczkiewicz, K., Ochoa, J. C., Krepski, T., Zembek, P. B., Pawłowski, K., Krzymowska, M.

Date: 2026-01-19 · Version: 2
DOI: 10.1101/2025.06.13.659573

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that the Nicotiana benthamiana NLR Roq1, previously known to recognize the XopQ/HopQ1/RipB effector family, also detects the structurally distinct HopAG1 effector, leading to reduced bacterial growth and disease symptoms. Roq1-HopAG1 interaction was confirmed by co‑immunoprecipitation and attributed to the Nudix domain of HopAG1 binding a similar receptor interface as XopQ, suggesting broader effector recognition potential for Roq1 and other TNLs.

NLR Roq1 HopAG1 Nudix domain Nicotiana benthamiana

Features affecting Cas9-Induced Editing Efficiency and Patterns in Tomato: Evidence from a Large CRISPR Dataset

Authors: Cucuy, A., Ben-Tov, D., Melamed-Bessudo, C., Honig, A., Cohen, B. A., Levy, A. A.

Date: 2026-01-07 · Version: 1
DOI: 10.64898/2026.01.06.696182

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.

CRISPR/Cas9 ATAC-seq chromatin accessibility microhomology‑mediated end joining tomato

Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases

Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697460

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.

root development sulfur metabolism sulfotransferase radiation‑induced mutant tomato

A Solanoeclepin A precursor functions as a new rhizosphere signaling molecule recruiting growth-promoting microbes under nitrogen deficiency

Authors: Abedini, D., Guerrieri, A., Jain, R., White, F., Koomen, J., Yang, Y., Wang, K., Kramer, G., Bouwmeester, H., Dong, L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.29.696744

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study shows that nitrogen deficiency markedly elevates the exudation of the triterpenoid Solanoeclepin A (SolA) from tomato roots, a process that requires non‑sterile soil and involves the rhizosphere microbiota. Transient silencing of two candidate biosynthetic genes (CYP749A19 and CYP749A20) reduced SolA levels and impaired recruitment of beneficial Massilia spp., which promote plant growth under nitrogen limitation, indicating that SolA acts as a microbe‑mediated recruitment signal that was co‑opted by cyst nematodes.

Solanoeclepin A nitrogen deficiency rhizosphere microbiome Massilia tomato

Quantitative trait locus mapping of root exudate metabolome in a Solanum lycopersicum Moneymaker x S. pimpinellifolium RIL population and their putative links to rhizosphere microbiome

Authors: Kim, B., Kramer, G., Leite, M. F. A., Snoek, B. L., Zancarini, A., Bouwmeester, H.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.17.693946

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study used untargeted metabolomics and QTL mapping in a tomato recombinant inbred line population to characterize root exudate composition and identify genetic loci controlling specific metabolites. It reveals domestication-driven changes in exudate profiles and links metabolic QTLs with previously reported microbial QTLs, suggesting a genetic basis for shaping the root microbiome.

root exudates untargeted metabolomics quantitative trait loci tomato plant‑microbe interactions

FLOWERING LOCUS T genes MtFTb1 and MtFTb2 act redundantly to promote flowering under long days in Medicago truncatula

Authors: Perez Santangelo, S., Macknight, R. C.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.15.694442

Category: Plant Biology

Model Organism: Medicago truncatula

AI Summary

The study identifies MtFTb1 and MtFTb2 as essential, redundant regulators of long‑day flowering in the legume Medicago truncatula, demonstrating that they are required for up‑regulating MtFTa1 under vernalised long‑day conditions. Using CRISPR/Cas9‑generated single and double mutants, the authors show that double mutants are specifically delayed in flowering under long days while retaining vernalization responsiveness, and transcriptomic analyses reveal that MtFTb1/2 activate MADS‑box genes and other flowering regulators.

flowering time FT genes Medicago truncatula CRISPR/Cas9 long‑day photoperiod

High-frequency sorghum transformation toolkit enhances Cas9 efficiency and expands promoter-editing capability with SpRY

Authors: Shen, J., Aregawi, K., Anwar, S., Miller, T., Groover, E. D., Rajkumar, M., Savage, D. F., Lemaux, P. G.

Date: 2025-12-07 · Version: 2
DOI: 10.1101/2025.01.21.634149

Category: Plant Biology

Model Organism: Sorghum bicolor

AI Summary

The study presents an optimized Agrobacterium-mediated transformation toolkit for Sorghum bicolor that achieves up to 95.7% editing efficiency using CRISPR/Cas9 targeting the SbPDS gene, and demonstrates comparable performance with a PAM‑broadened SpRY variant. This platform enables multiplex genome editing and is positioned for integration of advanced tools such as prime and base editors to accelerate sorghum breeding.

Sorghum bicolor CRISPR/Cas9 Agrobacterium-mediated transformation SpRY (PAM‑flexible Cas9) high-efficiency genome editing

Trichome formation in Nicotiana benthamiana is induced by Agrobacterium

Authors: Chen, J., Hands, P., Patel, M., Yang, L., Zhang, C., Smith, N., Luo, M., Ayliffe, M.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.02.691950

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that infiltrating Nicotiana benthamiana leaves with specific nopaline-type Agrobacterium tumefaciens strains dramatically increases local glandular trichome density within 15 days, an effect linked to the bacterial trans-zeatin synthase (tzs) gene that produces the cytokine trans‑zeatin. This simple Agrobacterium‑mediated approach enables direct comparison of high‑density trichome regions with adjacent isogenic tissue on the same leaf.

trichome density Agrobacterium infiltration trans‑zeatin synthase (tzs) cytokinin trans‑zeatin Nicotiana benthamiana
Page 1 of 7 Next