Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 66 Papers

Vacuolar invertase knockout enhances drought tolerance in potato plants

Authors: Roitman, M., Teper-Bamnolker, P., Doron-Faigenboim, A., Sikron, N., Fait, A., Vrobel, O., Tarkowski, P., Moshelion, M., Bocobza, S., Eshel, D.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.12.01.691554

Category: Plant Biology

Model Organism: Solanum tuberosum

AI Summary

CRISPR/Cas9 knockout of the vacuolar invertase gene (StVInv) in potato enhanced drought resilience, with mutants maintaining higher stomatal conductance, transpiration, and photosynthetic efficiency, leading to improved agronomic water-use efficiency and biomass under water limitation. Metabolomic profiling showed accumulation of galactinol and raffinose, while ABA levels were reduced, indicating altered osmoprotective and hormonal responses that support sustained growth during drought.

drought stress vacuo lar invertase knockout CRISPR/Cas9 raffinose family oligosaccharides water-use efficiency

The functional divergence of two ethylene receptor subfamilies that exhibit Ca2+-permeable channel activity

Authors: Pan, C., Cheng, J., Lin, Z., Hao, D., Xiao, Z., Ming, Y., Song, W., Liu, L., Guo, H.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.691086

Category: Plant Biology

Model Organism: General

AI Summary

The study demonstrates that subfamily I ethylene receptors form the core ethylene‑sensing module and act epistatically over subfamily II receptors, uniquely possessing Ca2+‑permeable channel activity that drives ethylene‑induced cytosolic calcium influx. This reveals a mechanistic link whereby subfamily I receptors integrate hormone perception with calcium signaling in plants.

ethylene signaling subfamily I receptors Ca2+ influx epistasis hormone‑induced calcium channel

Cytokinin-mediated trichome initiation in Nicotiana benthamiana upon Agrobacterium tumefaciens infiltration

Authors: Saebel, R., Brand, A., Balcke, G. U., Syrowatka, F., Horn, C., Marillonnet, S., Tissier, A. F.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.690080

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

Infiltration of Nicotiana benthamiana leaves with Agrobacterium tumefaciens strain GV3101 carrying the pMP90 Ti plasmid triggers de novo formation of capitate glandular trichomes and elevates acyl‑sugar production, an effect absent with other strains. The responsible factor is the trans‑zeatin synthase (tzs) gene on pMP90, and exogenous application of cytokinins (trans‑zeatin or benzylaminopurine) alone can reproduce trichome induction, linking cytokinin signaling to trichome development. The study highlights that Agrobacterium-mediated transient assays can have unintended developmental and biochemical impacts, recommending strain testing to mitigate such effects.

Agrobacterium tumefaciens Nicotiana benthamiana glandular trichomes cytokinins trans‑zeatin synthase

Causes and consequences of experimental variation in Nicotiana benthamiana transient expression

Authors: Tang, S. N., Szarzanowicz, M., Lanctot, A., Sirirungruang, S., Kirkpatrick, L. D., Drako, K., Alamos, S., Cheng, L., Waldburger, L. M., Liu, S., Huang, L., Akyuz Turumtay, E., Kazaz, S., Baidoo, E., Eudes, A., Thompson, M., Shih, P.

Date: 2025-11-20 · Version: 2
DOI: 10.1101/2025.06.12.659391

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study systematically examines sources of variability in Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana, analyzing a large dataset of 1,915 plants collected over three years. It demonstrates that normalization methods must be validated for each experimental context and provides a statistical model and power analysis framework to determine appropriate sample sizes for detecting specific effect sizes, offering practical guidelines to improve reproducibility in quantitative plant and synthetic biology studies.

Agrobacterium infiltration Nicotiana benthamiana transient expression variability normalization strategies power analysis

Mobility-enhanced virus vectors enable meristem genome editing in model and crop plants

Authors: Chiu, K. T., Higgs, H., Antunes, M. S., Lin, Y. T., McGarry, R. C.

Date: 2025-11-19 · Version: 1
DOI: 10.1101/2025.11.19.689159

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study engineered Tobacco rattle virus vectors incorporating distinct RNA secondary structures as mobility factors to improve guide RNA delivery to plant meristems. Using Nicotiana benthamiana plants expressing Cas9, optimal virus constructs were identified that generated both somatic and heritable edits, and these constructs were successfully applied to edit the emerging oilseed crop pennycress (Thlaspi arvense).

CRISPR/Cas9 Tobacco rattle virus (TRV) RNA mobility factors meristem editing virus-mediated gRNA delivery

Thermotolerant pollen tube growth is controlled by RALF signaling.

Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.

Date: 2025-11-12 · Version: 2
DOI: 10.1101/2025.10.25.684177

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.

thermotolerant pollen tube growth heat stress RALF signaling pollen tube integrity tomato

Developing a Molecular Toolkit to ENABLE all to apply CRISPR/Cas9-based Gene Editing in planta

Authors: Abate, B. A., Hahn, F., Chirivi, D., Betti, C., Fornara, F., Molloy, J. C., Krainer, K. M. C.

Date: 2025-11-09 · Version: 1
DOI: 10.1101/2025.11.09.687425

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors introduce the ENABLE(R) Gene Editing in planta toolkit, a streamlined two‑step cloning system for creating CRISPR/Cas9 knockout vectors suitable for transient or stable transformation. Validation was performed in Oryza sativa protoplasts and Arabidopsis thaliana plants, and the toolkit includes low‑cost protocols aimed at facilitating adoption in the Global South.

CRISPR/Cas9 plant gene editing low‑cost cloning Global South agriculture ENABLE(R) toolkit

Golden Promise-rapid, a fast-cycling barley genotype with high transformation efficiency

Authors: Buchmann, G., Haraldsson, E. B., Schüller, R., Rütjes, T., Walla, A. A., von Korff Schmising, M., Liu, S.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.31.685778

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

The authors created a fast‑cycling, isogenic barley line (GP‑rapid) by introgressing the wild‑type Ppd‑H1 allele from Igri into the Golden Promise cultivar and performing two backcrosses to limit the donor genome, achieving a 25% reduction in generation time under speed‑breeding conditions while retaining high transformation efficiency. CRISPR/Cas9‑mediated editing of Ppd‑H1 showed regeneration and transformation rates comparable to the original Golden Promise, establishing GP‑rapid as a rapid platform for transgenic and gene‑edited barley research.

Golden Promise Ppd-H1 speed breeding CRISPR/Cas9 transformation efficiency

Enterobacter sp. SA187-induced coordinated regulation of high-affinity nitrate transporters and ethylene signaling enhances nitrogen content and plant growth under low nitrate

Authors: Ilyas, A., Mauve, C., Decouard, B., Caius, J., Paysant-Leroux, C., Hodges, M., de Zelicourt, A.

Date: 2025-10-26 · Version: 2
DOI: 10.1101/2025.06.23.660384

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that inoculation with the non‑diazotrophic bacterium Enterobacter sp. SA187 significantly improves Arabidopsis thaliana growth under low nitrate conditions by increasing fresh weight, primary root length, and lateral root density, while enhancing nitrate accumulation and reducing shoot C:N ratios. Transcriptomic and mutant analyses reveal that these benefits depend on ethylene signaling and the activity of high‑affinity nitrate transporters NRT2.5 and NRT2.6, indicating an ethylene‑mediated, HATS‑dependent reprogramming of nitrogen uptake.

Enterobacter sp. SA187 low nitrate nutrition ethylene signaling high-affinity nitrate transporters plant‑growth‑promoting bacteria

Engineering compact Physalis peruviana (goldenberry) to promote its potential as a global crop

Authors: Santo Domingo, M., Fitzgerald, B., Robitaille, G. M., Ramakrishnan, S., Swartwood, K., Karavolias, N., Schatz, M., Van Eck, J., Lippman, Z.

Date: 2025-10-24 · Version: 2
DOI: 10.1101/2025.08.15.670557

Category: Plant Biology

Model Organism: Physalis peruviana

AI Summary

The study applied CRISPR/Cas9 gene editing to Physalis peruviana to modify plant‑architecture genes and create a compact growth ideotype. This compact phenotype is intended to increase per‑plot yield and support future breeding efforts for this nutritionally valuable minor crop.

Physalis peruviana Goldenberry CRISPR/Cas9 plant architecture compact ideotype
Previous Page 2 of 7 Next