Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 41 Papers

Molecular basis of delayed leaf senescence induced by short-term treatment with low phosphate in rice

Authors: Martin-Cardoso, H., Bundo, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-24 · Version: 1
DOI: 10.64898/2026.01.23.701354

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.

phosphate deficiency leaf senescence Oryza sativa CRISPR/Cas9 transcriptomic analysis

WITHDRAWN: The NLR immune receptor Roq1 recognizes the Pseudomonas syringae HopAG1 effector via its Nudix domain

Authors: Gorecka, M., Jonak, M., Grech-Baran, M., Steczkiewicz, K., Ochoa, J. C., Krepski, T., Zembek, P. B., Pawłowski, K., Krzymowska, M.

Date: 2026-01-19 · Version: 2
DOI: 10.1101/2025.06.13.659573

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that the Nicotiana benthamiana NLR Roq1, previously known to recognize the XopQ/HopQ1/RipB effector family, also detects the structurally distinct HopAG1 effector, leading to reduced bacterial growth and disease symptoms. Roq1-HopAG1 interaction was confirmed by co‑immunoprecipitation and attributed to the Nudix domain of HopAG1 binding a similar receptor interface as XopQ, suggesting broader effector recognition potential for Roq1 and other TNLs.

NLR Roq1 HopAG1 Nudix domain Nicotiana benthamiana

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization

The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.

Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.28.696759

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.

autophagy auxin signaling carbon/nitrogen ratio Physcomitrium patens caulonemata development

Comparative Evaluation of Conventional Inorganic Fertilization and Sesbania rostrata Green Manuring on Soil Properties and the Growth and Development of Oryza sativa L. Pant Basmati 1

Authors: Joshi, H. C., Patni, B., Guru, S. K., Bhatt, M. K., Singh, M.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.24.696455

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

A two‑year field trial compared conventional and organic nutrient management on the Basmati rice cultivar Pant Basmati 1, revealing that conventional fertilizer enhanced later‑stage growth and grain yield, while organic inputs increased early plant height and markedly improved soil health and harvest index in the second year. Despite some yield differences, organic management achieved comparable productivity with superior soil macro‑ and micronutrient status, water‑holding capacity, aggregate stability, and enzyme activities, supporting its sustainability as an alternative nutrient regime.

Oryza sativa organic nutrient management soil health harvest index Basmati rice

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis

Trichome formation in Nicotiana benthamiana is induced by Agrobacterium

Authors: Chen, J., Hands, P., Patel, M., Yang, L., Zhang, C., Smith, N., Luo, M., Ayliffe, M.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.02.691950

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that infiltrating Nicotiana benthamiana leaves with specific nopaline-type Agrobacterium tumefaciens strains dramatically increases local glandular trichome density within 15 days, an effect linked to the bacterial trans-zeatin synthase (tzs) gene that produces the cytokine trans‑zeatin. This simple Agrobacterium‑mediated approach enables direct comparison of high‑density trichome regions with adjacent isogenic tissue on the same leaf.

trichome density Agrobacterium infiltration trans‑zeatin synthase (tzs) cytokinin trans‑zeatin Nicotiana benthamiana

The Pik NLR pair accumulates at the plasma membrane as a hetero-oligomeric sensor-helper immune protein complex prior to activation

Authors: Pai, H., Contreras, M. P., Salguero Linares, J., Luedke, D., Posbeyikian, A., Kourelis, J., Kamoun, S., Marchal, C.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.11.30.691369

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study examined the pre‑activation state of the rice NLR pair Pik‑1 (sensor) and Pik‑2 (helper) when transiently expressed in Nicotiana benthamiana leaves. Both wild‑type and engineered Pik‑1 variants constitutively associate with Pik‑2 to form ~1 MDa hetero‑oligomeric complexes that localize to the plasma membrane in the absence of effector. These results reveal that some NLRs exist as pre‑assembled membrane‑associated complexes prior to pathogen perception.

NLR oligomerization Pik-1/Pik-2 sensor‑helper pair resting state complex plasma membrane localization Oryza sativa

Cytokinin-mediated trichome initiation in Nicotiana benthamiana upon Agrobacterium tumefaciens infiltration

Authors: Saebel, R., Brand, A., Balcke, G. U., Syrowatka, F., Horn, C., Marillonnet, S., Tissier, A. F.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.690080

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

Infiltration of Nicotiana benthamiana leaves with Agrobacterium tumefaciens strain GV3101 carrying the pMP90 Ti plasmid triggers de novo formation of capitate glandular trichomes and elevates acyl‑sugar production, an effect absent with other strains. The responsible factor is the trans‑zeatin synthase (tzs) gene on pMP90, and exogenous application of cytokinins (trans‑zeatin or benzylaminopurine) alone can reproduce trichome induction, linking cytokinin signaling to trichome development. The study highlights that Agrobacterium-mediated transient assays can have unintended developmental and biochemical impacts, recommending strain testing to mitigate such effects.

Agrobacterium tumefaciens Nicotiana benthamiana glandular trichomes cytokinins trans‑zeatin synthase

Causes and consequences of experimental variation in Nicotiana benthamiana transient expression

Authors: Tang, S. N., Szarzanowicz, M., Lanctot, A., Sirirungruang, S., Kirkpatrick, L. D., Drako, K., Alamos, S., Cheng, L., Waldburger, L. M., Liu, S., Huang, L., Akyuz Turumtay, E., Kazaz, S., Baidoo, E., Eudes, A., Thompson, M., Shih, P.

Date: 2025-11-20 · Version: 2
DOI: 10.1101/2025.06.12.659391

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study systematically examines sources of variability in Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana, analyzing a large dataset of 1,915 plants collected over three years. It demonstrates that normalization methods must be validated for each experimental context and provides a statistical model and power analysis framework to determine appropriate sample sizes for detecting specific effect sizes, offering practical guidelines to improve reproducibility in quantitative plant and synthetic biology studies.

Agrobacterium infiltration Nicotiana benthamiana transient expression variability normalization strategies power analysis
Page 1 of 5 Next