Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 74 Papers

WITHDRAWN: The NLR immune receptor Roq1 recognizes the Pseudomonas syringae HopAG1 effector via its Nudix domain

Authors: Gorecka, M., Jonak, M., Grech-Baran, M., Steczkiewicz, K., Ochoa, J. C., Krepski, T., Zembek, P. B., Pawłowski, K., Krzymowska, M.

Date: 2026-01-19 · Version: 2
DOI: 10.1101/2025.06.13.659573

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that the Nicotiana benthamiana NLR Roq1, previously known to recognize the XopQ/HopQ1/RipB effector family, also detects the structurally distinct HopAG1 effector, leading to reduced bacterial growth and disease symptoms. Roq1-HopAG1 interaction was confirmed by co‑immunoprecipitation and attributed to the Nudix domain of HopAG1 binding a similar receptor interface as XopQ, suggesting broader effector recognition potential for Roq1 and other TNLs.

NLR Roq1 HopAG1 Nudix domain Nicotiana benthamiana

Initiation of asexual reproduction by the AP2/ERF gene GEMMIFER in Marchantia polymorpha

Authors: Takahashi, G., Yamaya, S., Romani, F., Bonter, I., Ishizaki, K., Shimamura, M., Kiyosue, T., Haseloff, J., Hirakawa, Y.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699827

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identifies the AP2/ERF transcription factor GEMMIFER (MpGMFR) as essential for asexual reproduction in the liverwort Marchantia polymorpha, showing that loss of MpGMFR via genome editing or amiRNA abolishes gemma and gemma cup formation, while dexamethasone‑induced activation triggers their development. Transient strong activation of MpGMFR initiates gemma initial cells at the meristem, which mature into functional gemmae, indicating MpGMFR is both necessary and sufficient for meristem‑derived asexual propagule formation.

MpGMFR AP2/ERF gemmae Marchantia polymorpha asexual reproduction

The genetic architecture of leaf vein density traits and its importance for photosynthesis in maize

Authors: Coyac-Rodriguez, J. L., Perez-Limon, S., Hernandez-Jaimes, E., Hernandez-Coronado, M., Camo-Escobar, D., Alonso-Nieves, A. L., Ortega-Estrada, M. d. J., Gomez-Capetillo, N., Sawers, R. J., Ortiz-Ramirez, C. H.

Date: 2026-01-15 · Version: 1
DOI: 10.64898/2026.01.14.699362

Category: Plant Biology

Model Organism: Zea mays

AI Summary

Using diverse Mexican maize varieties and a MAGIC population, the study demonstrated that leaf vein density is both variable and plastic, correlating positively with photosynthetic rates for small intermediate veins and increasing under heat in drought-adapted lines. Twelve QTLs linked to vein patterning were identified, highlighting candidate genes for intermediate vein development and shedding light on the evolution of high-efficiency C4 leaf architecture.

leaf venation density C4 photosynthesis Zea mays QTL mapping MAGIC population

Southern South American Maize Landraces: A Source of Phenotypic Diversity

Authors: Dudzien, T. L., Freilij, D., Defacio, R. A., Fernandez, M., Paniego, N. B., Lia, V. V., Dominguez, P. G.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.02.697242

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study assessed 17 morphological, biochemical, and salt‑stress tolerance traits in 19 maize (Zea mays) landrace accessions from northern Argentina, revealing substantial variation both within and among accessions. Redundancy analysis linked phenotypic variation to the altitude of the collection sites, underscoring the potential of these landraces as sources of diverse biochemical and stress‑related traits for breeding.

Zea mays maize landraces phenotypic diversity biochemical traits salt stress tolerance

NT-C2-Dependent Phosphoinositide Binding Controls PLASTID MOVEMENT IMPAIRED1 Localization and Function

Authors: Cieslak, D., Staszalek, Z., Hermanowicz, P., Łabuz, J. M., Dobrowolska, G., Sztatelman, O.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697064

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the extended NT‑C2 domain of Plastid Movement Impaired 1 (PMI1) as the main membrane‑binding module that interacts with PI4P and PI(4,5)P2, requiring basic residues for plasma‑membrane association. Calcium binding by the NT‑C2 domain modulates its phosphoinositide preference, and cytosolic Ca2+ depletion blocks blue‑light‑induced PMI1 redistribution, indicating that both the NT‑C2 domain and adjacent intrinsically disordered regions are essential for PMI1’s role in chloroplast movement.

chloroplast movement PMI1 NT-C2 domain phosphoinositide binding calcium signaling

The influence of heavy metal stress on the evolutionary transition of teosinte to maize

Authors: Acosta Bayona, J. J., Vallebueno-Estrada, M., Vielle-Calzada, J.-P.

Date: 2025-12-22 · Version: 2
DOI: 10.1101/2025.03.17.643647

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study tests whether heavy‑metal stress contributed to maize domestication by exposing teosinte (Zea mays ssp. parviglumis) and the Palomero toluqueno landrace to sublethal copper and cadmium, then analysing genetic diversity, selection signatures, and transcriptomic responses of three chromosome‑5 heavy‑metal response genes (ZmHMA1, ZmHMA7, ZmSKUs5). Results reveal strong positive selection on these genes, heavy‑metal‑induced phenotypes resembling modern maize, and up‑regulation of Tb1, supporting a role for volcanic‑derived metal stress in early maize evolution.

heavy metal stress maize domestication Zea mays positive selection Tb1

Universal modules for decoding amplitude and frequency of Ca2+ signals in plants

Authors: Vergara-Valladares, F., Rubio-Melendez, M. E., Charpentier, M., Michard, E., Dreyer, I.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.13.694100

Category: Plant Biology

Model Organism: General

AI Summary

The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.

calcium signaling EF‑hand Ca2+ binding protein decoding modules plant calcium sensors signal amplitude and frequency

A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha

Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.

Date: 2025-12-13 · Version: 1
DOI: 10.64898/2025.12.11.693594

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.

SABATH methyltransferases Marchantia polymorpha gibberellin metabolism far‑red light response developmental regulation

Carbon availability acts via cytokinins to promote gemma cup formation in Marchantia polymorpha

Authors: Humphreys, J. L., Fisher, T. J., Perez, T. A., Flores-Sandoval, E., Silvestri, A., Rubio-Somoza, I., Barbier, F. F.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.08.692956

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.

gemma cup formation carbon availability cytokinin signaling Marchantia polymorpha MpGCAM1/MpSTG transcription factors

Trichome formation in Nicotiana benthamiana is induced by Agrobacterium

Authors: Chen, J., Hands, P., Patel, M., Yang, L., Zhang, C., Smith, N., Luo, M., Ayliffe, M.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.02.691950

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that infiltrating Nicotiana benthamiana leaves with specific nopaline-type Agrobacterium tumefaciens strains dramatically increases local glandular trichome density within 15 days, an effect linked to the bacterial trans-zeatin synthase (tzs) gene that produces the cytokine trans‑zeatin. This simple Agrobacterium‑mediated approach enables direct comparison of high‑density trichome regions with adjacent isogenic tissue on the same leaf.

trichome density Agrobacterium infiltration trans‑zeatin synthase (tzs) cytokinin trans‑zeatin Nicotiana benthamiana
Page 1 of 8 Next