Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 47 Papers

Discovery of pseudobaptigenin synthase, completing the (-)-maackiain biosynthetic pathway

Authors: Raytek, L. M., Liu, L., Bayen, S., Dastmalchi, M.

Date: 2025-11-19 · Version: 1
DOI: 10.1101/2025.11.18.689130

Category: Plant Biology

Model Organism: Trifolium pratense

AI Summary

The study integrated metabolomic and transcriptomic analyses of red clover (Trifolium pratense) roots infected with Fusarium oxysporum and Phoma medicaginis to identify candidate cytochrome P450 enzymes responsible for the methylenedioxy bridge formation in (-)-maackiain biosynthesis. Using co‑expression network analysis and phylogenetic screening, five P450 candidates were selected and screened in engineered Saccharomyces cerevisiae, revealing TpPbS/CYP76F319 as the enzyme catalyzing conversion of calycosin to pseudobaptigenin. This discovery enables reconstruction of the complete (-)-maackiain pathway for potential health and agricultural applications.

pterocarpans cytochrome P450 (-)-maackiain red clover metabolomics

Barley (Hordeum vulgare) maintains tricarboxylic acid cycle activity without invoking the GABA shunt under salt stress

Authors: Bandehagh, A., Taylor, N. L.

Date: 2025-11-08 · Version: 1
DOI: 10.1101/2025.11.06.687118

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.

salinity stress mitochondrial respiration tricarboxylic acid cycle metabolomics proteomics

Spatiotemporal Analysis Reveals Mechanisms Controlling Reactive Oxygen Species and Calcium Interplay Following Root Compression

Authors: Vinet, P., Audemar, V., Durand-Smet, P., Frachisse, J.-M., Thomine, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683952

Category: Plant Biology

Model Organism: General

AI Summary

Using a microfluidic valve rootchip, the study simultaneously tracked ROS and calcium dynamics in compressed roots and found three kinetic phases linking mechanosensitive channel activity, NADPH oxidase‑dependent ROS accumulation, and secondary calcium influx. Pharmacological inhibition revealed that a fast calcium response is mediated by plasma‑membrane mechanosensitive channels, while a slower calcium increase is driven by ROS production.

mechanotransduction reactive oxygen species calcium signaling microfluidic compression root biology

Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)

Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.

Date: 2025-10-21 · Version: 1
DOI: 10.1101/2025.10.20.683360

Category: Plant Biology

Model Organism: Pinus nigra

AI Summary

The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.

drought tolerance Pinus nigra metabolomics transcriptomics phenotyping

Additive and partially dominant effects from genomic variation contribute to rice heterosis

Authors: Dan, Z., Chen, Y., Zhou, W., Xu, Y., Huang, J., Chen, Y., Meng, J., Yao, G., Huang, W.

Date: 2025-10-17 · Version: 4
DOI: 10.1101/2024.07.16.603817

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.

heterosis Oryza sativa additive and partially dominant effects metabolomics phenylpropanoid biosynthesis

Ca2+ signature-dependent control of auxin sensitivity in Arabidopsis

Authors: Song, H., Baudon, A., Freund, M., Randuch, M., Pencik, A., Ondrej, N., He, Z., Kaufmann, K., Gilliham, M., Friml, J., Hedrich, R., Huang, S.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.04.680446

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses an optogenetic ChannelRhodopsin 2 variant (XXM2.0) to generate defined cytosolic Ca²⁺ transients in Arabidopsis root cells, revealing that these Ca²⁺ signatures suppress auxin‑induced membrane depolarization, Ca²⁺ spikes, and auxin‑responsive transcription, leading to reversible inhibition of cell division and elongation. This demonstrates that optogenetically imposed Ca²⁺ signals act as dynamic regulators of auxin sensitivity in roots.

auxin signaling calcium signaling optogenetics Arabidopsis root cell division inhibition

In-depth phenotyping reveals unexpected floral trait variation in Mimulus cardinalis across a range-wide latitudinal gradient

Authors: Neequaye, M., Kennedy, E. B., Gunn, H., Wenzell, K. E., Byers, K. J. R. P.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.03.680188

Category: Plant Biology

Model Organism: Mimulus cardinalis

AI Summary

The study examined five geographically diverse accessions of the hummingbird‑pollinated monkeyflower Mimulus cardinalis, revealing extensive variation in floral morphology, nectar composition, pigment biochemistry, and scent that influence pollinator perception. Integrating metabolomics, morphology, transcriptomics, and whole‑genome sequencing, the authors identified genetic differences underlying the independent evolution of yellow flowers at range edges. These findings highlight how climate, pollinator interactions, and multi‑trait diversification drive early stages of floral divergence.

Mimulus cardinalis floral trait variation pollinator-mediated selection metabolomics genomic analysis

Gene editing of Nicotiana benthamiana architecture for space-efficient production of recombinant proteins in controlled environments

Authors: Giroux, B., LeBreux, K., Feyzeau, L., Goulet, M.-C., Goulet, C., Michaud, D.

Date: 2025-10-02 · Version: 1
DOI: 10.1101/2025.10.01.679797

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

Using CRISPR‑Cas9, researchers knocked down CCD7 or CCD8 in Nicotiana benthamiana to suppress strigolactone synthesis, producing compact plants with a 45%–50% smaller spatial footprint while preserving recombinant protein yields (GFP and rituximab). The mutants showed altered leaf proteome, auxin/cytokinin balance, and metabolic fluxes without affecting overall growth rate, demonstrating suitability for indoor vertical farming biopharma production.

CRISPR-Cas9 Nicotiana benthamiana strigolactone depletion vertical farming compact phenotype

Candidatus Phytoplasma-induced Retrogressive Morphogenesis in Sesame (Sesamum indicum L.): Tissue-Specific Metabolic and Transcriptomic Reprogramming

Authors: Banerjee, S., Gangopadhyay, G.

Date: 2025-10-01 · Version: 1
DOI: 10.1101/2025.09.29.679221

Category: Plant Biology

Model Organism: Sesamum indicum

AI Summary

Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.

phytoplasma infection Sesamum indicum metabolomics transcriptomics tissue-specific response

A Multi-lensed Comparative Analysis of Select Secondary Metabolites Produced by Kale, Brassica oleracea, in Simulated Microgravity Versus Gravity Conditions

Authors: Osano, A., Dill, R., Li, Y., Yan, J., Ray, S., Ude, G., Iro, A.

Date: 2025-10-01 · Version: 1
DOI: 10.1101/2025.09.29.679299

Category: Plant Biology

Model Organism: Kale (Brassica oleracea var. acephala)

AI Summary

The study examined how simulated microgravity, using a 2-D clinostat, influences the metabolomic profile of the Starbor Kale (F1) cultivar, focusing on flavonoid content. Proton NMR revealed increased aromatic peaks, and HPTLC showed enhanced banding in medium- and high-polarity extracts, indicating elevated secondary metabolite production under microgravity conditions. These findings suggest kale is a promising candidate for space-based cultivation to mitigate astronaut health risks.

microgravity flavonoids metabolomics 1H NMR HPTLC
Previous Page 2 of 5 Next