Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 6 Papers

Phosphite, an analog of phosphate, counteracts Phosphate Induced Susceptibility of rice to the blast fungus Magnaporthe oryzae

Authors: Mallavarapu, M. D., Martin-Cardoso, H., Bücker, G., Alussi, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.700763

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.

phosphite (Phi) phosphate (Pi) plant immunity pathogen resistance transcriptomic reprogramming

Rubisco Dark Inhibition in Angiosperms Shows a Complex Distribution Pattern

Authors: Nehls-Ramos, C., Carmo-Silva, E., Orr, D. J.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689527

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.

Rubisco dark inhibition flowering plants phylogenetic analysis photosynthetic regulation CO2-fixing enzyme

A plant-centric investigation of Class B Flavin-dependent Monooxygenase evolution and structural diversity

Authors: Christensen, J. M., Neilson, E. H.

Date: 2025-09-16 · Version: 1
DOI: 10.1101/2025.09.16.676513

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study presents a plant‑focused phylogenetic analysis of class B flavin‑dependent monooxygenases, identifying eight distinct families and revealing lineage‑specific diversification, especially in the NADPH‑binding domain. Using known FMOs as baits, they assembled flavin‑related proteins from key Viridiplantae lineages, performed domain architecture and motif analyses, and reclassified several families, providing a framework for future functional studies.

Class B flavin-dependent monooxygenases phylogenetic analysis Viridiplantae domain architecture motif analysis

Single-cell-resolved calcium and organelle dynamics in resistosome-mediated cell death

Authors: Chen, Y.-F., Lin, K.-Y., Huang, C.-Y., Hou, L.-Y., Yuen, E. L. H., Sun, W.-C. J., Chiang, B.-J., Chang, C.-W., Wang, H.-Y., Bozkurt, T. O., Wu, C.-H.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.27.662017

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study visualizes subcellular dynamics following activation of the NRC4 resistosome, showing that NRC4 enrichment at the plasma membrane triggers calcium influx, followed by sequential disruption of mitochondria, plastids, endoplasmic reticulum, and cytoskeleton, culminating in plasma membrane rupture and cell death. These observations define a temporally ordered cascade of organelle and membrane events that execute plant immune cell death.

NLR resistosome calcium signaling organelle disruption cell death cascade plant immunity

The auxin gatekeepers: Evolution and diversification of the YUCCA family

Authors: Vijayanathan, M., Faryad, A., Abeywickrama, T. D., Christensen, J. M., Neilson, E. H.

Date: 2025-04-14 · Version: 1
DOI: 10.1101/2025.04.11.648386

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors conducted a comprehensive phylogenetic and sequence analysis of the conserved YUCCA (YUC) gene family across representative plant lineages, classifying the family into six major classes and 41 subclasses. They linked YUC diversification to protein sequence conservation and spatial/temporal gene expression patterns, providing a framework for future functional investigations of auxin biosynthesis.

YUCCA gene family indole-3-acetic acid phylogenetic analysis gene family diversification auxin biosynthesis

Non-invasive imaging of salicylic and jasmonic acid activities in planta

Authors: Balakireva, A. V., Karataeva, T. A., Karampelias, M., Mitiouchkina, T. Y., Machacek, J., Shakhova, E. S., Perfilov, M. M., Belozerova, O. A., Palkina, K. A., Drazna, N., Vondrakova, Z., Fleiss, A., Fakhranurova, L. I., Markina, N. M., Morozov, V. V., Bugaeva, E. N., Delnova, G. M., Choob, V. V., Yampolsky, I. V., Petrasek, J., Mishin, A. S., Sarkisyan, K. S.

Date: 2025-02-17 · Version: 1
DOI: 10.1101/2025.02.17.636591

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study engineered autoluminescent reporter constructs that visually indicate jasmonic and salicylic acid signaling with up to 53‑fold contrast. Using consumer‑grade cameras, the authors monitored hormone activity in Arabidopsis thaliana and Nicotiana benthamiana throughout development and during pest and pathogen attacks.

jasmonic acid salicylic acid autoluminescent reporter plant immunity Arabidopsis thaliana