Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Guard Cell-Enriched Phosphoproteome Reveals Phosphorylation of Endomembrane Proteins in Closed Stomata

Authors: Pullen, A.-M., Lyons, S., Mordant, A., Herring, L. E., Akpa, B., Rojas-Pierce, M.

Date: 2025-10-15 · Version: 1
DOI: 10.1101/2025.10.15.682613

Category: Plant Biology

Model Organism: General

AI Summary

The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.

stomatal aperture guard cells phosphorylation endomembrane trafficking proteomics

Impaired methyl recycling induces substantial shifts in sulfur utilization in Arabidopsis

Authors: Tremblay, B. J.-M., Adeel, S. A., Saechao, M., Dong, Y., Andrianasolo, E., Steele, J. M., Traa, A., Yogadasan, N., Waduwara-Jayabahu, I., Katzenback, B. A., Hell, R., Wirtz, M., Moffatt, B. A.

Date: 2025-03-13 · Version: 1
DOI: 10.1101/2025.03.09.642221

Category: Plant Biology

Model Organism: General

AI Summary

Reduced activity of methylthioadenosine (MTA) nucleosidase causes MTA over‑accumulation in reproductive tissues, leading to lowered cysteine, methionine, and S‑adenosylmethionine levels and altered sulfur and energy metabolism. These metabolic disturbances trigger misregulation of cell‑cycle progression, widespread down‑regulation of developmental genes, and genome‑wide changes in DNA methylation patterns, highlighting the extensive role of MTA recycling in plant growth and methyl‑index maintenance.

sulfur metabolism methylthioadenosine nucleosidase methionine/S‑adenosylmethionine biosynthesis DNA methylation reproductive development