Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 30 Papers

WITHDRAWN: The NLR immune receptor Roq1 recognizes the Pseudomonas syringae HopAG1 effector via its Nudix domain

Authors: Gorecka, M., Jonak, M., Grech-Baran, M., Steczkiewicz, K., Ochoa, J. C., Krepski, T., Zembek, P. B., Pawłowski, K., Krzymowska, M.

Date: 2026-01-19 · Version: 2
DOI: 10.1101/2025.06.13.659573

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that the Nicotiana benthamiana NLR Roq1, previously known to recognize the XopQ/HopQ1/RipB effector family, also detects the structurally distinct HopAG1 effector, leading to reduced bacterial growth and disease symptoms. Roq1-HopAG1 interaction was confirmed by co‑immunoprecipitation and attributed to the Nudix domain of HopAG1 binding a similar receptor interface as XopQ, suggesting broader effector recognition potential for Roq1 and other TNLs.

NLR Roq1 HopAG1 Nudix domain Nicotiana benthamiana

Physics-Informed Neural Network Methods for Predicting Plant Height Development

Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699475

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.

Physics-Informed Neural Network logistic ODE Long Short-Term Memory plant height prediction wheat

Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens

Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.15.692859

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.

tandem kinase proteins HMA domain disease resistance barley wheat

Targeting granule initiation and amyloplast structure to create giant starch granules in wheat

Authors: McNelly, R., Esch, L., Ngai, Q. Y., Pohan, K., Stringer, R., Fahy, B., Warren, F., Seung, D.

Date: 2025-12-15 · Version: 1
DOI: 10.64898/2025.12.12.693964

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.

starch granule size PARC6 BGC1 wheat giant starch granules

Trichome formation in Nicotiana benthamiana is induced by Agrobacterium

Authors: Chen, J., Hands, P., Patel, M., Yang, L., Zhang, C., Smith, N., Luo, M., Ayliffe, M.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.02.691950

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that infiltrating Nicotiana benthamiana leaves with specific nopaline-type Agrobacterium tumefaciens strains dramatically increases local glandular trichome density within 15 days, an effect linked to the bacterial trans-zeatin synthase (tzs) gene that produces the cytokine trans‑zeatin. This simple Agrobacterium‑mediated approach enables direct comparison of high‑density trichome regions with adjacent isogenic tissue on the same leaf.

trichome density Agrobacterium infiltration trans‑zeatin synthase (tzs) cytokinin trans‑zeatin Nicotiana benthamiana

Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions

Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.

Date: 2025-12-04 · Version: 1
DOI: 10.64898/2025.12.02.691979

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.

wheat Fusarium head blight deoxynivalenol untargeted metabolomics diterpene conjugates

Cytokinin-mediated trichome initiation in Nicotiana benthamiana upon Agrobacterium tumefaciens infiltration

Authors: Saebel, R., Brand, A., Balcke, G. U., Syrowatka, F., Horn, C., Marillonnet, S., Tissier, A. F.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.690080

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

Infiltration of Nicotiana benthamiana leaves with Agrobacterium tumefaciens strain GV3101 carrying the pMP90 Ti plasmid triggers de novo formation of capitate glandular trichomes and elevates acyl‑sugar production, an effect absent with other strains. The responsible factor is the trans‑zeatin synthase (tzs) gene on pMP90, and exogenous application of cytokinins (trans‑zeatin or benzylaminopurine) alone can reproduce trichome induction, linking cytokinin signaling to trichome development. The study highlights that Agrobacterium-mediated transient assays can have unintended developmental and biochemical impacts, recommending strain testing to mitigate such effects.

Agrobacterium tumefaciens Nicotiana benthamiana glandular trichomes cytokinins trans‑zeatin synthase

Causes and consequences of experimental variation in Nicotiana benthamiana transient expression

Authors: Tang, S. N., Szarzanowicz, M., Lanctot, A., Sirirungruang, S., Kirkpatrick, L. D., Drako, K., Alamos, S., Cheng, L., Waldburger, L. M., Liu, S., Huang, L., Akyuz Turumtay, E., Kazaz, S., Baidoo, E., Eudes, A., Thompson, M., Shih, P.

Date: 2025-11-20 · Version: 2
DOI: 10.1101/2025.06.12.659391

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study systematically examines sources of variability in Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana, analyzing a large dataset of 1,915 plants collected over three years. It demonstrates that normalization methods must be validated for each experimental context and provides a statistical model and power analysis framework to determine appropriate sample sizes for detecting specific effect sizes, offering practical guidelines to improve reproducibility in quantitative plant and synthetic biology studies.

Agrobacterium infiltration Nicotiana benthamiana transient expression variability normalization strategies power analysis

Dual recognition of structurally unrelated mildew effectors underlies the broad-spectrum resistance of Pm3e in wheat

Authors: Kunz, L., Bernasconi, Z., Heuberger, M., Isaksson, J., Sotiropoulos, A. G., Stirnemann, U., Jigisha, J., Menardo, F., Wicker, T., Mueller, M. C., Keller, B.

Date: 2025-10-30 · Version: 2
DOI: 10.1101/2025.10.26.683672

Category: Plant Biology

Model Organism: Triticum aestivum (wheat)

AI Summary

The study investigates the wheat Pm3 NLR allelic series, revealing that near-identical Pm3d and Pm3e alleles confer broad-spectrum resistance by recognizing multiple, structurally diverse powdery mildew effectors. Using chimeric NLR constructs, the authors pinpoint specificity-determining polymorphisms and demonstrate that engineered combinations of Pm3d and Pm3e further expand effector recognition, showcasing the potential for durable wheat protection through NLR engineering.

broad-spectrum resistance NLR receptors Pm3 alleles powdery mildew effectors wheat

Gene editing of Nicotiana benthamiana architecture for space-efficient production of recombinant proteins in controlled environments

Authors: Giroux, B., LeBreux, K., Feyzeau, L., Goulet, M.-C., Goulet, C., Michaud, D.

Date: 2025-10-02 · Version: 1
DOI: 10.1101/2025.10.01.679797

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

Using CRISPR‑Cas9, researchers knocked down CCD7 or CCD8 in Nicotiana benthamiana to suppress strigolactone synthesis, producing compact plants with a 45%–50% smaller spatial footprint while preserving recombinant protein yields (GFP and rituximab). The mutants showed altered leaf proteome, auxin/cytokinin balance, and metabolic fluxes without affecting overall growth rate, demonstrating suitability for indoor vertical farming biopharma production.

CRISPR-Cas9 Nicotiana benthamiana strigolactone depletion vertical farming compact phenotype
Page 1 of 3 Next