Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 58 Papers

Molecular basis of delayed leaf senescence induced by short-term treatment with low phosphate in rice

Authors: Martin-Cardoso, H., Bundo, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-24 · Version: 1
DOI: 10.64898/2026.01.23.701354

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.

phosphate deficiency leaf senescence Oryza sativa CRISPR/Cas9 transcriptomic analysis

Decoding stage-specific symbiotic programs in the Rhizophagus irregularis-tomato interaction using single-nucleus transcriptomics

Authors: Stuer, N., Leroy, T., Eekhout, T., De Keyser, A., Staut, J., De Rybel, B., Vandepoele, K., Van Damme, P., Van Dingenen, J., Goormachtig, S.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701092

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated the first single‑nucleus RNA‑sequencing dataset of tomato (Solanum lycopersicum) roots colonized by the arbuscular mycorrhizal fungus Rhizophagus irregularis, revealing distinct transcriptional programs in epidermal and cortical cells across stages of arbuscule development. Using unsupervised subclustering and a Motif‑Informed Network Inference (MINI‑EX) approach, the authors identified candidate transcription factors that may coordinate cell‑cycle reactivation and nutrient integration during symbiosis, offering a resource for future functional genetics.

arbuscular mycorrhizal symbiosis single-nucleus RNA sequencing Solanum lycopersicum transcription factor network inference root cortical development

A Savory-based Formulation for Sustainable Management of Early Blight caused by Alternaria solani and Preservation of Tomato Fruit Quality

Authors: Lak, F., Omrani, A., Nikkhah, M. J., Gohari, A. M., Nicolaisen, M., Abuali, M., Ahmadzadeh, M.

Date: 2026-01-22 · Version: 1
DOI: 10.64898/2026.01.20.700539

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study assessed three savory essential oil–based formulations for controlling early blight caused by Alternaria solani in tomato, finding that formulation CC2020 most effectively reduced disease severity in both in vitro and greenhouse trials. CC2020 also helped maintain tomato fruit vitamin C levels and lowered fungal melanin production, indicating dual benefits for disease suppression and fruit quality.

early blight Solanum lycopersicum savory essential oil biocompatible formulation fruit quality

Comparative Evaluation of Conventional Inorganic Fertilization and Sesbania rostrata Green Manuring on Soil Properties and the Growth and Development of Oryza sativa L. Pant Basmati 1

Authors: Joshi, H. C., Patni, B., Guru, S. K., Bhatt, M. K., Singh, M.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.24.696455

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

A two‑year field trial compared conventional and organic nutrient management on the Basmati rice cultivar Pant Basmati 1, revealing that conventional fertilizer enhanced later‑stage growth and grain yield, while organic inputs increased early plant height and markedly improved soil health and harvest index in the second year. Despite some yield differences, organic management achieved comparable productivity with superior soil macro‑ and micronutrient status, water‑holding capacity, aggregate stability, and enzyme activities, supporting its sustainability as an alternative nutrient regime.

Oryza sativa organic nutrient management soil health harvest index Basmati rice

Membrane-binding domains define REMORIN phylogeny and provide a predicted structural basis for distinctive membrane nano-environments

Authors: Biermann, D., Gronnier, J.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.22.695504

Category: Plant Biology

Model Organism: General

AI Summary

The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.

REMORIN proteins C-terminal domain membrane nano-organization phylogenetic analysis structural bioinformatics

The Pik NLR pair accumulates at the plasma membrane as a hetero-oligomeric sensor-helper immune protein complex prior to activation

Authors: Pai, H., Contreras, M. P., Salguero Linares, J., Luedke, D., Posbeyikian, A., Kourelis, J., Kamoun, S., Marchal, C.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.11.30.691369

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study examined the pre‑activation state of the rice NLR pair Pik‑1 (sensor) and Pik‑2 (helper) when transiently expressed in Nicotiana benthamiana leaves. Both wild‑type and engineered Pik‑1 variants constitutively associate with Pik‑2 to form ~1 MDa hetero‑oligomeric complexes that localize to the plasma membrane in the absence of effector. These results reveal that some NLRs exist as pre‑assembled membrane‑associated complexes prior to pathogen perception.

NLR oligomerization Pik-1/Pik-2 sensor‑helper pair resting state complex plasma membrane localization Oryza sativa

Ca2+-driven nanodomain enrichment and plasma membrane proteome remodelling enable bacterial outer membrane vesicle perception in rice

Authors: Mondal, I., Das, H., Behera, S.

Date: 2025-12-02 · Version: 2
DOI: 10.1101/2025.09.17.676730

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study reveals that rice perceives Xanthomonas oryzae pv. oryzae outer membrane vesicles through a rapid calcium signal that triggers plasma‑membrane nanodomain formation and the re‑organisation of defence‑related proteins, establishing an early immune response. Without this Ca2+ signal, OMVs are not recognized and immunity is weakened.

Xanthomonas oryzae pv. oryzae outer membrane vesicles calcium signaling plasma membrane nanodomains proteomics

Chloroplast-mitochondria synergy modulates responses to iron limitation in two Thalassiosira diatom species

Authors: ANGULO, J., Uwizeye, C., Albanese, P., Menneteau, M., Ravanel, S., Jouneau, P.-H., Finazzi, G., Courtois, F.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.691171

Category: Plant Biology

Model Organism: Thalassiosira oceanica; Thalassiosira pseudonana

AI Summary

The study compares the iron-poor oceanic diatom Thalassiosira oceanica with the iron-rich coastal species T. pseudonana to uncover how diatoms adapt to low-iron conditions. Using photo‑physiological measurements, proteomic profiling, and focused ion beam scanning electron microscopy, the researchers show that each species remodels chloroplast compartments and exhibits distinct mitochondrial architectures to maintain chloroplast‑mitochondrial coupling under iron limitation.

iron limitation diatoms Thalassiosira chloroplast-mitochondrial coupling proteomics

CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds

Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.

Date: 2025-11-28 · Version: 1
DOI: 10.1101/2025.11.25.690394

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.

CLPC2 microbial volatile compounds chloroplast CLP protease proteomics Arabidopsis thaliana

CHLOROPLAST GENOME AND PHYLOGENETIC ANALYSIS OF KATMON (Dillenia philippinensis Rolfe), A PHILIPPINE ENDEMIC FRUIT

Authors: Lucero, J. J. M., Munoz, J. A. M., Aglibot, L. Y., Cardona, D. E. M., Gueco, L. S., Manalang, A. P., Villanueva, J. C., Alonday, R. C. S.

Date: 2025-11-27 · Version: 1
DOI: 10.1101/2025.11.26.690882

Category: Plant Biology

Model Organism: Dillenia philippinensis

AI Summary

The complete chloroplast genome of the endemic fruit species Dillenia philippinensis was sequenced, assembled, and annotated, revealing a 161,591‑bp quadripartite structure with 113 unique genes. Comparative analyses identified simple sequence repeats, codon usage patterns, and phylogenetic placement close to D. suffroticosa, providing a genomic resource for future breeding and conservation efforts.

Dillenia philippinensis chloroplast genome Illumina NovaSeqX phylogenetic analysis simple sequence repeats
Page 1 of 6 Next