Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 44 Papers

Ca2+-driven nanodomain enrichment and plasma membrane proteome remodelling enable bacterial outer membrane vesicle perception in rice

Authors: Mondal, I., Das, H., Behera, S.

Date: 2025-12-02 · Version: 2
DOI: 10.1101/2025.09.17.676730

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study reveals that rice perceives Xanthomonas oryzae pv. oryzae outer membrane vesicles through a rapid calcium signal that triggers plasma‑membrane nanodomain formation and the re‑organisation of defence‑related proteins, establishing an early immune response. Without this Ca2+ signal, OMVs are not recognized and immunity is weakened.

Xanthomonas oryzae pv. oryzae outer membrane vesicles calcium signaling plasma membrane nanodomains proteomics

Thermotolerant pollen tube growth is controlled by RALF signaling.

Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.

Date: 2025-11-12 · Version: 2
DOI: 10.1101/2025.10.25.684177

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.

thermotolerant pollen tube growth heat stress RALF signaling pollen tube integrity tomato

Spatiotemporal Analysis Reveals Mechanisms Controlling Reactive Oxygen Species and Calcium Interplay Following Root Compression

Authors: Vinet, P., Audemar, V., Durand-Smet, P., Frachisse, J.-M., Thomine, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683952

Category: Plant Biology

Model Organism: General

AI Summary

Using a microfluidic valve rootchip, the study simultaneously tracked ROS and calcium dynamics in compressed roots and found three kinetic phases linking mechanosensitive channel activity, NADPH oxidase‑dependent ROS accumulation, and secondary calcium influx. Pharmacological inhibition revealed that a fast calcium response is mediated by plasma‑membrane mechanosensitive channels, while a slower calcium increase is driven by ROS production.

mechanotransduction reactive oxygen species calcium signaling microfluidic compression root biology

Additive and partially dominant effects from genomic variation contribute to rice heterosis

Authors: Dan, Z., Chen, Y., Zhou, W., Xu, Y., Huang, J., Chen, Y., Meng, J., Yao, G., Huang, W.

Date: 2025-10-17 · Version: 4
DOI: 10.1101/2024.07.16.603817

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.

heterosis Oryza sativa additive and partially dominant effects metabolomics phenylpropanoid biosynthesis

Discovery of tomato UDP-glucosyltransferases involved in bioactive jasmonate homeostasis using limited proteolysis-coupled mass spectrometry

Authors: Venegas-Molina, J., Mohnike, L., Selma Garcia, S., Janssens, H., Colembie, R., Kimpe, I., Jaramillo-Madrid, A. C., Lacchini, E., Winne, J. M., Van Damme, P., Feussner, I., Goossens, A., Sola, K.

Date: 2025-10-15 · Version: 1
DOI: 10.1101/2025.10.15.682356

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study applied limited proteolysis‑coupled mass spectrometry (LiP‑MS) to map JA‑protein interactions, validating known JA binders and uncovering novel candidates, including several UDP‑glucuronosyltransferases (UGTs). Functional omics, biochemical, enzymatic, and structural analyses demonstrated that two tomato UGTs glucosylate jasmonic acid, revealing a previously missing step in JA catabolism.

jasmonic acid limited proteolysis‑coupled mass spectrometry UDP‑glucuronosyltransferase JA catabolism tomato

Ca2+ signature-dependent control of auxin sensitivity in Arabidopsis

Authors: Song, H., Baudon, A., Freund, M., Randuch, M., Pencik, A., Ondrej, N., He, Z., Kaufmann, K., Gilliham, M., Friml, J., Hedrich, R., Huang, S.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.04.680446

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses an optogenetic ChannelRhodopsin 2 variant (XXM2.0) to generate defined cytosolic Ca²⁺ transients in Arabidopsis root cells, revealing that these Ca²⁺ signatures suppress auxin‑induced membrane depolarization, Ca²⁺ spikes, and auxin‑responsive transcription, leading to reversible inhibition of cell division and elongation. This demonstrates that optogenetically imposed Ca²⁺ signals act as dynamic regulators of auxin sensitivity in roots.

auxin signaling calcium signaling optogenetics Arabidopsis root cell division inhibition

Mammalian growth-regulating factors enhance regeneration of recalcitrant transgenic tomato accessions

Authors: Garchery, C., Benejam, J., Grau, A., Gricourt, J., Pelpoir, E., Causse, M.

Date: 2025-09-29 · Version: 1
DOI: 10.1101/2025.09.25.678568

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study assessed the impact of adding mammalian growth factors and cytokines to transformation media on CRISPR‑Cas9–mediated genome editing in six tomato (Solanum lycopersicum) accessions with varying regeneration capacities. Over three years, supplementation with these factors significantly increased regeneration rates and the production of stable secondary transgenic lines, especially in recalcitrant genotypes.

CRISPR-Cas9 plant regeneration mammalian growth factors cytokines tomato

SlATG8f enhances tomato thermotolerance and fruit quality via autophagy and HS pathways

Authors: Cheng, q., Xu, w., wen, c., He, Z., Song, L.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.678159

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The researchers created tomato lines overexpressing the autophagy gene SlATG8f and evaluated their performance under high-temperature stress. qRT‑PCR and physiological measurements revealed that SlATG8f overexpression enhances expression of autophagy‑related and heat‑shock protein genes, accelerates fruit ripening, and improves fruit quality under heat stress.

SlATG8f autophagy high-temperature stress tomato fruit quality

Repressed expression of nucleoporins and importins impairs plant defense against an infectious noncoding RNA

Authors: Wang, Y., Fang, Y., Merritt, B. A., Liu, B., Gu, Y., Mou, Z., Wang, Y., Hao, J.

Date: 2025-09-21 · Version: 1
DOI: 10.1101/2025.09.19.677415

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

Proteomic comparison of mock‑ and potato spindle tuber viroid‑infected tomato revealed a broad down‑regulation of nucleoporins and nuclear transport receptors, leading to impaired nuclear import of the immune regulator NPR1. Overexpression of NPR1 or treatment with a salicylic‑acid analog restored defense and reduced PSTVd infection, highlighting nuclear transport repression as a key vulnerability in plant immunity against viroids.

viroid nucleoporins NPR1 salicylic acid analog tomato

PHO2 suppresses arbuscular mycorrhizal symbiosis in high phosphate conditions

Authors: Birch, S., Perryman, S., Ellison, E., Foreman, N., Mekjan, N., Williams, A., Bate-Weldon, M., Ralfs, T., Pucker, B., Whiting, M., Hope, M. S., Wallington, E., Field, K., Choi, J.

Date: 2025-09-05 · Version: 1
DOI: 10.1101/2025.09.03.673468

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identifies the rice E2 ubiquitin‑conjugating enzyme PHO2 as a key negative regulator of arbuscular mycorrhizal (AM) colonisation under high phosphate conditions. pho2 mutants in Oryza sativa (and Nicotiana benthamiana) maintain AM fungal entry and exhibit enhanced direct and symbiotic phosphate accumulation, linked to sustained expression of AM‑related genes despite phosphate sufficiency.

Arbuscular mycorrhizal symbiosis Phosphate starvation response PHO2 ubiquitin‑conjugating enzyme Oryza sativa Phosphate accumulation
Previous Page 2 of 5 Next