Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 36 Papers

PHO2 suppresses arbuscular mycorrhizal symbiosis in high phosphate conditions

Authors: Birch, S., Perryman, S., Ellison, E., Foreman, N., Mekjan, N., Williams, A., Bate-Weldon, M., Ralfs, T., Pucker, B., Whiting, M., Hope, M. S., Wallington, E., Field, K., Choi, J.

Date: 2025-09-05 · Version: 1
DOI: 10.1101/2025.09.03.673468

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identifies the rice E2 ubiquitin‑conjugating enzyme PHO2 as a key negative regulator of arbuscular mycorrhizal (AM) colonisation under high phosphate conditions. pho2 mutants in Oryza sativa (and Nicotiana benthamiana) maintain AM fungal entry and exhibit enhanced direct and symbiotic phosphate accumulation, linked to sustained expression of AM‑related genes despite phosphate sufficiency.

Arbuscular mycorrhizal symbiosis Phosphate starvation response PHO2 ubiquitin‑conjugating enzyme Oryza sativa Phosphate accumulation

Calcium-dependent protein kinases participate in RBOH-mediated sustained ROS burst during plant immune cell death

Authors: Hino, Y., Yoshioka, M., Adachi, H., Yoshioka, H.

Date: 2025-09-01 · Version: 1
DOI: 10.1101/2025.09.01.672762

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that calcium-dependent protein kinases NbCDPK4 and NbCDPK5 directly phosphorylate the NADPH oxidase NbRBOHB at Ser‑123, enhancing sustained ROS production during effector-triggered immunity in Nicotiana benthamiana. Constitutively active CDPKs also upregulate NbRBOHB transcription, and phosphorylation of Ser‑123 is amplified by Ca2+ influx triggered by an autoactive helper NLR (NRC4). These results define a NbCDPK‑NbRBOHB signaling module that links NLR activation to prolonged ROS bursts in ETI.

effector-triggered immunity calcium-dependent protein kinases NADPH oxidase reactive oxygen species Nicotiana benthamiana

The improved auxin signalling via entire mutation enhances aluminium tolerance in tomato

Authors: Silva, R., Siqueira, J. A., Batista-Silva, W., Ferreira-Silva, M., Thiago, W., Vargas, J. R., Vilela, G., Robson, R., Neto, D. F. M., Azevedo, A. A., Ribeiro, C., Fernie, A., Nunes-Nesi, A., Araujo, W.

Date: 2025-09-01 · Version: 1
DOI: 10.1101/2025.08.29.673006

Category: Plant Biology

Model Organism: Tomato

AI Summary

The study investigates how auxin signaling influences aluminium tolerance using tomato mutants with altered auxin sensitivity, showing that the auxin‑hypersensitive entire mutant tolerates Al stress while the auxin‑reduced dgt mutant is more sensitive. Differences in reactive oxygen species accumulation and root transition‑zone cell differentiation correlate with distinct metabolic responses, suggesting that modifying auxin perception can enhance crop Al tolerance.

aluminium toxicity auxin signaling tomato mutants reactive oxygen species metabolite profiling

Drought drives reversible disengagement of root-mycorrhizal symbiosis

Authors: Akmakjian, G. Z., Nozue, K., Nakayama, H., Borowsky, A. T., Morris, A. M., Baker, K., Canto-Pastor, A., Paszkowski, U., Sinha, N., Brady, S., Bailey-Serres, J.

Date: 2025-08-27 · Version: 1
DOI: 10.1101/2025.08.25.671999

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study shows that during drought, rice (Oryza sativa) downregulates nutrient acquisition and arbuscular mycorrhizal (AM) symbiosis genes, causing the fungal partner to enter metabolic quiescence and retract hyphae, but upon re-watering the symbiosis is rapidly reactivated. This reversible dynamic suggests that plant‑fungus mutualisms are fragile under fluctuating water availability.

drought stress arbuscular mycorrhizal symbiosis Oryza sativa nutrient acquisition regulation re-watering recovery

Ubiquitin-like SUMO protease expansion in rice (Oryza sativa)

Authors: Sue-ob, K., Zhang, C., Sharma, E., Bhosale, R., Sadanandom, A., Jones, A. R.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.20.671006

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study employed computational approaches to characterize the SUMOylation (ULP) machinery in Asian rice (Oryza sativa), analyzing phylogenetic relationships, transcriptional patterns, and protein structures across the reference genome, a population panel, and wild relatives. Findings reveal an expansion of ULP genes in cultivated rice, suggesting selection pressure during breeding and implicating specific ULPs in biotic and abiotic stress responses, providing resources for rice improvement.

SUMOylation ULP proteases Oryza sativa phylogenetic analysis stress response

Insights from controlled, comparative experiments highlight the limitations of using BSMV and FoMV for virus-enabled reverse genetics in rice

Authors: Turra, G. M., Merotto, A., MacGregor, D. R.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.21.671469

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study evaluated barley stripe mosaic virus (BSMV) and foxtail mosaic virus (FoMV) vectors for virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX) in several Oryza sativa cultivars, finding that neither vector altered gene expression despite successful assays in wheat and extensive optimization. The lack of photobleaching with BSMV-PDS and absent GFP fluorescence with FoMV suggest intrinsic resistance mechanisms in rice, highlighting species-specific limitations of virus-enabled reverse genetics and the need for alternative vectors.

Virus-enabled reverse genetics VIGS VOX Barley stripe mosaic virus Oryza sativa

High Cross Pollination Frequency in Rice Landraces in Field Condition

Authors: Deb, D., Bhattacharya, D., Nauri, M.

Date: 2025-08-07 · Version: 1
DOI: 10.1101/2025.08.06.668876

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study measured flower opening time and flower exposure duration (FED) in rice cultivars and performed controlled crossing experiments under short‑day and long‑day conditions, finding that when FED overlap exceeds ~20 min, cross‑pollination frequency often exceeds 60 % and can reach 100 %. These results overturn the long‑standing view that rice cross‑pollination is <2 % and highlight the need to investigate genetic factors underlying F1 sterility.

flower opening time flower exposure duration cross pollination frequency Oryza sativa short‑day/long‑day photoperiod

A copper-dependent, redox-based hydrogen peroxide perception in plants

Authors: Ishihama, N., Fukuda, Y., Shirano, Y., Takizawa, K., Hiroyama, R., Fujimoto, K. J., Ito, H., Nishimura, M., Yanai, T., Inoue, T., Shirasu, K., Laohavisit, A.

Date: 2025-07-25 · Version: 1
DOI: 10.1101/2025.07.22.666036

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study resolves the ectodomain structure of the plant-specific LRR‑RLK CARD1 (HPCA1) and reveals a surface‑exposed copper ion coordinated by histidines that is essential for hydrogen peroxide signaling. Combined structural, genetic, and biochemical analyses show that previously identified cysteine residues are not required for signal perception, establishing CARD1 as the first copper‑dependent redox receptor.

quinone signaling reactive oxygen species LRR‑RLK copper‑dependent receptor hydrogen peroxide signaling

The secreted redox sensor roGFP2-Orp1 reveals oxidative dynamics in the plant apoplast

Authors: Ingelfinger, J., Zander, L., Seitz, P. L., Trentmann, O., Tiedemann, S., Sprunck, S., Dresselhaus, T., Meyer, A. J., Müller-Schüssele, S. J.

Date: 2025-07-09 · Version: 2
DOI: 10.1101/2025.01.10.632316

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study evaluated the genetically encoded redox biosensor roGFP2-Orp1 for monitoring extracellular redox dynamics in diverse land plants, revealing that re‑oxidation rates in the apoplast differ between Physcomitrium patens and Arabidopsis thaliana and are accelerated by immune activation. Comparisons across tip‑growing cells showed no intracellular redox gradient but a partially reduced extracellular sensor in Nicotiana tabacum pollen tubes, indicating species‑ and cell‑type‑specific oxidative processes.

reactive oxygen species apoplastic redox dynamics roGFP2-Orp1 biosensor immune signaling plant model species

A hierarchical abscission program regulates reproductive allocation in Prunus yedoensis and Prunus sargentii

Authors: Jeon, W.-T., Kim, J.-A., Cheon, A., Lee, S. S. Y., Kang, J., Lee, J.-M., Lee, Y.

Date: 2025-07-08 · Version: 1
DOI: 10.1101/2025.07.08.663657

Category: Plant Biology

Model Organism: Prunus yedoensis, Prunus sargentii

AI Summary

The study examined five sequential organ abscission events in two cherry species, revealing that some abscission zones form de novo while others are pre‑formed and reactivated by localized ethylene signaling, leading to cell division, lignification, ROS accumulation, and pH changes. Species‑specific differences were found in petal shedding and a post‑fertilization checkpoint that eliminates small fruits, indicating a hierarchical, multilayered reproductive filter controlling fruit set.

organ abscission abscission zone ethylene signaling reactive oxygen species Prunus reproductive biology
Previous Page 2 of 4 Next