The study generated the first single‑nucleus RNA‑sequencing dataset of tomato (Solanum lycopersicum) roots colonized by the arbuscular mycorrhizal fungus Rhizophagus irregularis, revealing distinct transcriptional programs in epidermal and cortical cells across stages of arbuscule development. Using unsupervised subclustering and a Motif‑Informed Network Inference (MINI‑EX) approach, the authors identified candidate transcription factors that may coordinate cell‑cycle reactivation and nutrient integration during symbiosis, offering a resource for future functional genetics.
The study assessed three savory essential oil–based formulations for controlling early blight caused by Alternaria solani in tomato, finding that formulation CC2020 most effectively reduced disease severity in both in vitro and greenhouse trials. CC2020 also helped maintain tomato fruit vitamin C levels and lowered fungal melanin production, indicating dual benefits for disease suppression and fruit quality.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.
The authors generated a high‑resolution 1.45‑billion‑contact Micro‑C map for cultivated tomato (Solanum lycopersicum), identifying ~4,600 long‑range chromatin loops that fall into promoter‑centered and Polycomb/heterochromatin‑associated classes. Comparative Micro‑C in wild tomatoes showed conserved loop anchors despite sequence turnover, and integration with transcriptomics revealed that promoter‑anchored loops can either activate or repress gene expression depending on the chromatin state of distal anchors.
The study conducted a genome-wide characterization of 247 lectin genes in tomato, revealing diverse domain architectures and evolutionary patterns shaped by whole-genome and small-scale duplications. Functional assays using virus-induced gene silencing demonstrated that two GNA-type chimerolectins act as negative regulators of immunity, with silencing enhancing resistance to Ralstonia solanacearum. These results underscore the structural innovation and immune-regulatory roles of lectin genes, offering targets for disease‑resistant tomato breeding.
The study examined how increasing copper concentrations affect root tip cells of Solanum lycopersicum, revealing that mitochondria are the first organelles to exhibit fragmentation, depolarization, and ROS accumulation, which trigger stress signaling cascades. Copper exposure also caused pronounced nuclear alterations, including chromatin condensation marked by reduced H3K4me3, nuclear shrinkage, and eventual cell death, highlighting chromatin remodeling as a key indicator of copper toxicity.
Using transparent root apex cells of Solanum lycopersicum, the study employed live‑cell fluorescence imaging, immunostaining, and super‑resolution microscopy to map the sequential collapse of organelles under lidocaine anesthesia. It reveals that mitochondria, lysosomes, vesicle trafficking, and especially the nucleus undergo time‑dependent damage, with reversible effects up to four hours but irreversible nuclear degradation and programmed cell death beyond that, highlighting potential protective strategies.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study introduces a minimal precursor platform for synthetic trans-acting siRNAs (syn-tasiRNAs) in tomato, leveraging the endogenous SlmiR482b microRNA to produce functional silencing agents in both transgenic and virus-induced gene silencing (VIGS) systems. Minimal precursors successfully silenced endogenous genes and conferred resistance to tomato spotted wilt virus, and a transgene‑free delivery via crude extracts was demonstrated, highlighting a versatile tool for precision RNAi in Solanum lycopersicum.