Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 13 Papers

Cell-type specific autophagy in root hair forming cells is essential for salt stress tolerance in Arabidopsis thaliana

Authors: Zhao, J., Loefke, C., Yeung, K. C., Chen, Y., Dagdas, Y.

Date: 2025-03-18 · Version: 1
DOI: 10.1101/2025.03.18.643786

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that root hair-forming trichoblast cells in Arabidopsis thaliana display higher autophagic flux than adjacent atrichoblast cells, a difference linked to cell fate determination. Elevated autophagy in trichoblasts is required for vacuolar sodium sequestration, contributing to salt‑stress tolerance, whereas disrupting autophagy in these cells impairs ion accumulation and survival. Cell‑type‑specific genetic complementation restores both autophagy and stress resilience, highlighting a developmental program that tailors autophagy for environmental adaptation.

autophagy trichoblast Arabidopsis thaliana salt stress cell-type-specific regulation

MYB59 is linked to natural variation of water use associated with warmer temperatures in Arabidopsis thaliana

Authors: Ferguson, J. N., Brendel, O., Bechtold, U.

Date: 2025-02-28 · Version: 1
DOI: 10.1101/2025.02.27.640580

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study surveyed vegetative water use and life‑history traits across Arabidopsis thaliana ecotypes in both controlled and outdoor environments to assess how climatic history shapes water‑use strategies. Trait‑climate correlations and genome‑wide association analyses uncovered that ecotypes from warmer regions exhibit higher water use, and identified MYB59 as a key gene whose temperature‑linked alleles affect water consumption, a finding validated using myb59 mutants. These results indicate that temperature‑driven adaptive differentiation partly explains intraspecific water‑use variation.

water-use variation Arabidopsis thaliana climate adaptation GWAS MYB59

Lack of AtMC1 catalytic activity triggers autoimmunity dependent on NLR stability

Authors: Salguero-Linares, J., Armengot, L., Ayet, J., Ruiz-Solani, N., Saile, S., Salas-Gomez, M., Fernandez, E., Denolf, L., Navarrete, F., Krumbach, J., Kaiser, M., Stael, S., Van Breusegem, F., Gevaert, K., Kaschani, F., petersen, m., El Kasmi, F., Valls, M., Coll, N. S.

Date: 2025-02-03 · Version: 1
DOI: 10.1101/2025.01.31.635913

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that loss of Arabidopsis metacaspase 1 (AtMC1) triggers autoimmunity reliant on downstream NLR and PRR signaling, and that overexpressing a catalytically dead AtMC1 exacerbates this effect. Overexpression of the E3 ligase SNIPER1 restores normal immunity, suggesting that AtMC1 regulates NLR protein turnover, possibly via autophagic degradation of the inactive protein.

metacaspase 1 autoimmunity NLR homeostasis SNIPER1 autophagy
Previous Page 2 of 2